Azure Databricks “Failed to get instance bootstrap steps from the Databricks Control Plane”

I have a terraform code to deploy a Databricks Workspace.

resource "azurerm_databricks_workspace" "databricks" {
  resource_group_name = var.resource_group_name
  location            = var.context.location # West Europe

  name                        = local.dbw_name
  managed_resource_group_name = local.mrg_name

  sku = "premium" # Needed for private endpoint

  public_network_access_enabled         = false
  network_security_group_rules_required = "NoAzureDatabricksRules" # https://docs.microsoft.com/en-us/azure/databricks/administration-guide/cloud-configurations/azure/private-link#--step-3-provision-an-azure-databricks-workspace-and-private-endpoints

  custom_parameters {
    no_public_ip                                         = true # Security constrain 
    virtual_network_id                                   = local.vnet_id
    public_subnet_name                                   = local.container_subnet_name
    public_subnet_network_security_group_association_id  = var.subnet_configuration_for_container.network_security_group_id
    private_subnet_name                                  = local.host_subnet_name
    private_subnet_network_security_group_association_id = var.subnet_configuration_for_host.network_security_group_id
    storage_account_name                                 = local.st_name
  }

  tags = merge(local.default_tags, { managed_databricks = true })

  lifecycle {
    ignore_changes = [
      tags["availability"],
      tags["confidentiality"],
      tags["integrity"],
      tags["spoke_type"],
      tags["traceability"],
    ]
    precondition {
      condition     = length(local.dbw_name) < 64
      error_message = "The Databricks resource name must be no longer than 64 characters. Please shorten the `instance` variable."
    }
  }

  depends_on = [
    data.azapi_resource.subnet["host"],
    data.azapi_resource.subnet["container"]
  ]
}

We also have 2 private endpoints for the webapp dbw and webauth dbw. Both are then registered in our custom DNS so that the URL/IP of the host and container are accessible inside our network.

When deploying this code on subscription A, we have 0 issue. Cluster starts correclty, fast, no timeout.
But when deploying on subscription B and C that are identical as A, we have issues. The only difference between A/B/C are the name/ID (same tenantID), the policies are the same, the terraform code is the same, the DNS/firewall/proxy is the same.

On Subscription B/C when trying to start a cluster/job/dbt we have issue starting them. But not all the time.
Here is the error on the Databricks UI:

Failed to get instance bootstrap steps from the Databricks Control Plane.
Please check that instances have connectivity to the Databricks Control Plane.
Instance bootstrap failed command: GetRunbook Failure message: (Base64 encoded) XXXXXXXXXXXXXXX
VM extension code: ProvisioningState/succeeded instanceId:
InstanceId(aca79a0fb49e4c808700af118638e8ac)
workerEnv: workerenv-2477805373171457
Additional details (may be truncated): [Bootstrap Event] Command DownloadBootstrapScript finished.
Storage Account: arprodwesteua4.blob.core.windows.net [SUCCEEDED]. Seconds Elapsed: 4.69204 2024/07/10 09:09:54
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetToken finished. [SUCCEEDED]. Seconds Elapsed: 0.0390388965607 2024/07/10 09:09:54
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetInstanceId finished. [SUCCEEDED]. Seconds Elapsed: 0.0142250061035 2024/07/10 09:10:11
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetInstanceId finished. [SUCCEEDED]. Seconds Elapsed: 0.0148358345032 2024/07/10 09:10:30
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetInstanceId finished. [SUCCEEDED]. Seconds Elapsed: 0.0136380195618 2024/07/10 09:10:54
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetInstanceId finished. [SUCCEEDED]. Seconds Elapsed: 0.014701128006 2024/07/10 09:11:25
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetInstanceId finished. [SUCCEEDED]. Seconds Elapsed: 0.0169570446014 2024/07/10 09:12:12
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetInstanceId finished. [SUCCEEDED]. Seconds Elapsed: 0.0156190395355 2024/07/10 09:13:31
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetInstanceId finished. [SUCCEEDED]. Seconds Elapsed: 0.0194149017334 2024/07/10 09:15:55
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetInstanceId finished. [SUCCEEDED]. Seconds Elapsed: 0.014839887619 2024/07/10 09:20:26
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetInstanceId finished. [SUCCEEDED]. Seconds Elapsed: 0.0163550376892 2024/07/10 09:20:41
INFO vm_bootstrap.py:1233: [Bootstrap Event] Command GetRunbook finished. [FAILED] . Seconds Elapsed: 646.803928137 2024/07/10 09:20:41
INFO vm_bootstrap.py:240: [Bootstrap Event] {FAILED_COMMAND:GetRunbook} 2024/07/10 09:20:41 
INFO vm_bootstrap.py:242: [Bootstrap Event] {FAILED_MESSAGE:(Base64 encoded) XXXXXXXXXXX } 2024/07/10 09:20:41
INFO vm_bootstrap.py:1224: [Bootstrap Event] Command GetInstanceId finished. [SUCCEEDED]. Seconds Elapsed: 0.0184330940247

When starting a sparksession on my computer to reach the cluster I get this:

24/07/11 08:32:25 WARN HTTPClient: Excluding proxy hosts for HTTP client based on env var no_proxy=localhost,10.0.0.0/8,storageA.blob.core.windows.net,storageB.blob.core.windows.net,storageC.blob.core.windows.net,storageD.blob.core.windows.net,storageE.blob.core.windows.net,storageF.blob.core.windows.net,storageG.blob.core.windows.net,.dev.azuresynapse.net,.azuresynapse.net,.table.core.windows.net,.queue.core.windows.net,.file.core.windows.net,.web.core.windows.net,.dfs.core.windows.net,.documents.azure.com,.batch.azure.com,.service.batch.azure.com,.vault.azure.net,.vaultcore.azure.net,.managedhsm.azure.net,.azmk8s.io,.search.windows.net,.azurecr.io,.azconfig.io,.servicebus.windows.net,.azure-devices.net,.servicebus.windows.net,.azure-devices-provisioning.net,.eventgrid.azure.net,.azurewebsites.net,.scm.azurewebsites.net,.api.azureml.ms,.notebooks.azure.net,.instances.azureml.ms,.aznbcontent.net,.inference.ml.azure.com,.cognitiveservices.azure.com,.afs.azure.net,.datafactory.azure.net,.adf.azure.com,.purview.azure.com,.azure-api.net,.developer.azure-api.net,.analysis.windows.net,.azuredatabricks.net,.dev.azure.com,.azurefd.net,.vsblob.vsassets.io,otr.dtc3.cf.saint-gobain.net,.openai.azure.com
24/07/11 08:32:26 WARN SparkServiceRPCClient: Cluster xxxx-xxxxxx-xxxxxxxx in state TERMINATED, waiting for it to start running...
24/07/11 08:32:37 WARN SparkServiceRPCClient: Cluster xxxx-xxxxxx-xxxxxxxx in state PENDING, waiting for it to start running...
24/07/11 08:46:22 WARN SparkServiceRPCClient: Cluster xxxx-xxxxxx-xxxxxxxx in state PENDING, waiting for it to start running...
24/07/11 08:46:32 ERROR SparkClientManager: Fail to get the SparkClient
java.util.concurrent.ExecutionException: com.databricks.service.SparkServiceConnectionException: Invalid cluster ID: "xxxx-xxxxxx-xxxxxxxx"

The cluster ID you specified does not correspond to any existing cluster.
Cluster ID: The ID of the cluster on which you want to run your code
  - This should look like 0123-456789-abcd012
  - Get current value: spark.conf.get("spark.databricks.service.clusterId")
  - Set via conf: spark.conf.set("spark.databricks.service.clusterId", <your cluster ID>)
  - Set via environment variable: export DATABRICKS_CLUSTER_ID=<your cluster ID>
      
    at org.sparkproject.guava.util.concurrent.AbstractFuture$Sync.getValue(AbstractFuture.java:299)
    at org.sparkproject.guava.util.concurrent.AbstractFuture$Sync.get(AbstractFuture.java:286)
    at org.sparkproject.guava.util.concurrent.AbstractFuture.get(AbstractFuture.java:116)
    at org.sparkproject.guava.util.concurrent.Uninterruptibles.getUninterruptibly(Uninterruptibles.java:135)
    at org.sparkproject.guava.cache.LocalCache$Segment.getAndRecordStats(LocalCache.java:2344)
    at org.sparkproject.guava.cache.LocalCache$Segment.loadSync(LocalCache.java:2316)
    at org.sparkproject.guava.cache.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2278)
    at org.sparkproject.guava.cache.LocalCache$Segment.get(LocalCache.java:2193)
    at org.sparkproject.guava.cache.LocalCache.get(LocalCache.java:3932)
    at org.sparkproject.guava.cache.LocalCache$LocalManualCache.get(LocalCache.java:4721)
    at com.databricks.service.SparkClientManager.liftedTree1$1(SparkClient.scala:377)
    at com.databricks.service.SparkClientManager.getForSession(SparkClient.scala:376)
    at com.databricks.service.SparkClientManager.getForSession$(SparkClient.scala:353)
    at com.databricks.service.SparkClientManager$.getForSession(SparkClient.scala:401)
    at com.databricks.service.SparkClientManager.getForCurrentSession(SparkClient.scala:351)
    at com.databricks.service.SparkClientManager.getForCurrentSession$(SparkClient.scala:351)
    at com.databricks.service.SparkClientManager$.getForCurrentSession(SparkClient.scala:401)
    at com.databricks.service.SparkClient$.getServerHadoopConf(SparkClient.scala:297)
    at com.databricks.spark.util.SparkClientContext$.getServerHadoopConf(SparkClientContext.scala:281)
    at org.apache.spark.SparkContext.$anonfun$hadoopConfiguration$1(SparkContext.scala:407)
    at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
    at org.apache.spark.SparkContext.hadoopConfiguration(SparkContext.scala:398)
    at com.databricks.sql.DatabricksEdge.catalog(DatabricksEdge.scala:198)
    at com.databricks.sql.DatabricksEdge.catalog$(DatabricksEdge.scala:197)
    at org.apache.spark.sql.internal.SessionStateBuilder.catalog$lzycompute(SessionState.scala:179)
    at org.apache.spark.sql.internal.SessionStateBuilder.catalog(SessionState.scala:179)
    at org.apache.spark.sql.internal.BaseSessionStateBuilder.v2SessionCatalog$lzycompute(BaseSessionStateBuilder.scala:190)
    at org.apache.spark.sql.internal.BaseSessionStateBuilder.v2SessionCatalog(BaseSessionStateBuilder.scala:190)
    at org.apache.spark.sql.internal.BaseSessionStateBuilder.catalogManager$lzycompute(BaseSessionStateBuilder.scala:193)
    at org.apache.spark.sql.internal.BaseSessionStateBuilder.catalogManager(BaseSessionStateBuilder.scala:192)
    at org.apache.spark.sql.internal.BaseSessionStateBuilder$$anon$1.<init>(BaseSessionStateBuilder.scala:208)
    at org.apache.spark.sql.internal.BaseSessionStateBuilder.analyzer(BaseSessionStateBuilder.scala:208)
    at org.apache.spark.sql.internal.BaseSessionStateBuilder.$anonfun$build$7(BaseSessionStateBuilder.scala:427)
    at org.apache.spark.sql.internal.SessionState.analyzer$lzycompute(SessionState.scala:106)
    at org.apache.spark.sql.internal.SessionState.analyzer(SessionState.scala:106)
    at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:171)
    at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:24)
    at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:352)
    at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$4(QueryExecution.scala:393)
    at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:821)
    at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:393)
    at com.databricks.util.LexicalThreadLocal$Handle.runWith(LexicalThreadLocal.scala:63)
    at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:389)
    at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1073)
    at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:389)
    at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:165)
    at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:165)
    at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:155)
    at org.apache.spark.sql.Dataset$.$anonfun$ofRows$1(Dataset.scala:100)
    at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1073)
    at org.apache.spark.sql.SparkSession.$anonfun$withActiveAndFrameProfiler$1(SparkSession.scala:1080)
    at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:24)
    at org.apache.spark.sql.SparkSession.withActiveAndFrameProfiler(SparkSession.scala:1080)
    at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:98)
    at org.apache.spark.sql.DataFrameReader.table(DataFrameReader.scala:811)
    at org.apache.spark.sql.SparkSession.table(SparkSession.scala:835)
    at java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:104)
    at java.base/java.lang.reflect.Method.invoke(Method.java:578)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
    at py4j.Gateway.invoke(Gateway.java:306)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:195)
    at py4j.ClientServerConnection.run(ClientServerConnection.java:115)
    at java.base/java.lang.Thread.run(Thread.java:1589)
Caused by: com.databricks.service.SparkServiceConnectionException: Invalid cluster ID: "xxxx-xxxxxx-xxxxxxxx"

Sometimes we get errors like this:

24/07/11 08:13:28 WARN SparkServiceRPCClient: Fatal connection error for RPC 1257ff66-7657-46de-8c8a-28bad097c6b9
Traceback (most recent call last):
  File "/mnt/azureml/cr/j/1da76efc59a44a94b488740ba8b08bba/exe/wd/main.py", line 67, in <module>
    main()
  File "/mnt/azureml/cr/j/1da76efc59a44a94b488740ba8b08bba/exe/wd/main.py", line 31, in main
    metric = count_check.run(
  File "/mnt/azureml/cr/j/1da76efc59a44a94b488740ba8b08bba/exe/wd/core/count_check.py", line 53, in run
    current_df = reduce(
  File "/mnt/azureml/cr/j/1da76efc59a44a94b488740ba8b08bba/exe/wd/core/count_check.py", line 56, in <genexpr>
    spark.table(table_info.table_name.format(settings.deploy_env))
  File "/azureml-envs/python3.10/lib/python3.10/site-packages/pyspark/instrumentation_utils.py", line 48, in wrapper
    res = func(*args, **kwargs)
  File "/azureml-envs/python3.10/lib/python3.10/site-packages/pyspark/sql/session.py", line 1423, in table
    return DataFrame(self._jsparkSession.table(tableName), self)
  File "/azureml-envs/python3.10/lib/python3.10/site-packages/py4j/java_gateway.py", line 1321, in __call__
    return_value = get_return_value(
  File "/azureml-envs/python3.10/lib/python3.10/site-packages/pyspark/errors/exceptions.py", line 228, in deco
    return f(*a, **kw)
  File "/azureml-envs/python3.10/lib/python3.10/site-packages/py4j/protocol.py", line 326, in get_return_value
    raise Py4JJavaError(
py4j.protocol.Py4JJavaError: An error occurred while calling o26.table.
: com.databricks.service.SparkServiceConnectionException: Request failed with HTTP 404
Client information:
Shard address: "https://adb-xxxxxxxxxxxx.xx.azuredatabricks.net"
Cluster ID: "xxxx-xxxxxx-xxxxxxxx"
Port: 15001
Token ID: "xxxxxxxxxxxxxxx"
Org ID: xxxxxxxxxxxx
     
Response:
Tunnel f155a135180b448bba783398a66a1878.workerenv-2477805373171457.mux.ngrok-dataplane.wildcard not found
    at com.databricks.service.SparkServiceRPCClient.handleResponse(SparkServiceRPCClient.scala:134)
    at com.databricks.service.SparkServiceRPCClient.doPost(SparkServiceRPCClient.scala:112)

We have no clue on why the errors are so random. We did a telnet to our firewall/proxy/dns and it is working. All ports for the Workspaces A/B/C are opened the same way. All of them are in no_public_ip.
I’m not sure why this Control Plane is not reached. And when it is working, sometimes we have timeout when reading/writting on DBFS + ABFS (mounting point correcly configured)

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật