Avoid or skip prints while working with YDF (Yggdrasil Decision Forests)

I am doing some tests using this YDF library through RandomForestLearner, and comparing a little with RandomForestClassifier from sklearn, in python

but working with this, with YDF, I am seeing that every time I train a forest it generates a print that long

WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=56 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
[INFO 24-05-17 15:29:24.0753 UTC dataset.cc:407] max_vocab_count = -1 for column income, the dictionary will not be pruned by size.
Train model on 22792 examples
[INFO 24-05-17 15:29:24.1390 UTC learner.cc:142] Data spec:
Number of records: 22792
Number of columns: 15

Number of columns by type:
        CATEGORICAL: 9 (60%)
        NUMERICAL: 6 (40%)

Columns:

CATEGORICAL: 9 (60%)
        0: "income" CATEGORICAL has-dict vocab-size:3 zero-ood-items most-frequent:"<=50K" 17308 (75.9389%) dtype:DTYPE_BYTES
        2: "workclass" CATEGORICAL num-nas:1257 (5.51509%) has-dict vocab-size:8 num-oods:3 (0.0139308%) most-frequent:"Private" 15879 (73.7358%) dtype:DTYPE_BYTES
        4: "education" CATEGORICAL has-dict vocab-size:17 zero-ood-items most-frequent:"HS-grad" 7340 (32.2043%) dtype:DTYPE_BYTES
        6: "marital_status" CATEGORICAL has-dict vocab-size:8 zero-ood-items most-frequent:"Married-civ-spouse" 10431 (45.7661%) dtype:DTYPE_BYTES
        7: "occupation" CATEGORICAL num-nas:1260 (5.52826%) has-dict vocab-size:14 num-oods:4 (0.018577%) most-frequent:"Prof-specialty" 2870 (13.329%) dtype:DTYPE_BYTES
        8: "relationship" CATEGORICAL has-dict vocab-size:7 zero-ood-items most-frequent:"Husband" 9191 (40.3256%) dtype:DTYPE_BYTES
        9: "race" CATEGORICAL has-dict vocab-size:6 zero-ood-items most-frequent:"White" 19467 (85.4115%) dtype:DTYPE_BYTES
        10: "sex" CATEGORICAL has-dict vocab-size:3 zero-ood-items most-frequent:"Male" 15165 (66.5365%) dtype:DTYPE_BYTES
        14: "native_country" CATEGORICAL num-nas:407 (1.78571%) has-dict vocab-size:41 num-oods:1 (0.00446728%) most-frequent:"United-States" 20436 (91.2933%) dtype:DTYPE_BYTES

NUMERICAL: 6 (40%)
        1: "age" NUMERICAL mean:38.6153 min:17 max:90 sd:13.661 dtype:DTYPE_INT64
        3: "fnlwgt" NUMERICAL mean:189879 min:12285 max:1.4847e+06 sd:106423 dtype:DTYPE_INT64
        5: "education_num" NUMERICAL mean:10.0927 min:1 max:16 sd:2.56427 dtype:DTYPE_INT64
        11: "capital_gain" NUMERICAL mean:1081.9 min:0 max:99999 sd:7509.48 dtype:DTYPE_INT64
        12: "capital_loss" NUMERICAL mean:87.2806 min:0 max:4356 sd:403.01 dtype:DTYPE_INT64
        13: "hours_per_week" NUMERICAL mean:40.3955 min:1 max:99 sd:12.249 dtype:DTYPE_INT64

Terminology:
        nas: Number of non-available (i.e. missing) values.
        ood: Out of dictionary.
        manually-defined: Attribute whose type is manually defined by the user, i.e., the type was not automatically inferred.
        tokenized: The attribute value is obtained through tokenization.
        has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
        vocab-size: Number of unique values.

[INFO 24-05-17 15:29:24.1653 UTC abstract_learner.cc:128] No input feature explicitly specified. Using all the available input features.
[INFO 24-05-17 15:29:24.1823 UTC abstract_learner.cc:142] The label "income" was removed from the input feature set.
[INFO 24-05-17 15:29:24.1976 UTC random_forest.cc:416] Training random forest on 22792 example(s) and 14 feature(s).
[INFO 24-05-17 15:29:24.3008 UTC random_forest.cc:802] Training of tree  1/300 (tree index:0) done accuracy:0.842143 logloss:5.68975
[INFO 24-05-17 15:29:24.3899 UTC random_forest.cc:802] Training of tree  11/300 (tree index:1) done accuracy:0.855271 logloss:2.88284
[INFO 24-05-17 15:29:24.4740 UTC random_forest.cc:802] Training of tree  21/300 (tree index:10) done accuracy:0.860728 logloss:1.95538
[INFO 24-05-17 15:29:24.5490 UTC random_forest.cc:802] Training of tree  31/300 (tree index:25) done accuracy:0.862188 logloss:1.53271
[INFO 24-05-17 15:29:24.6546 UTC random_forest.cc:802] Training of tree  41/300 (tree index:40) done accuracy:0.862452 logloss:1.33531
[INFO 24-05-17 15:29:24.7470 UTC random_forest.cc:802] Training of tree  51/300 (tree index:49) done accuracy:0.862452 logloss:1.17718
[INFO 24-05-17 15:29:24.8189 UTC random_forest.cc:802] Training of tree  61/300 (tree index:60) done accuracy:0.862978 logloss:1.07946
[INFO 24-05-17 15:29:24.8915 UTC random_forest.cc:802] Training of tree  71/300 (tree index:69) done accuracy:0.863461 logloss:0.984856
[INFO 24-05-17 15:29:24.9501 UTC random_forest.cc:802] Training of tree  81/300 (tree index:80) done accuracy:0.864514 logloss:0.947954
[INFO 24-05-17 15:29:25.0158 UTC random_forest.cc:802] Training of tree  91/300 (tree index:90) done accuracy:0.864645 logloss:0.877497
[INFO 24-05-17 15:29:25.0751 UTC random_forest.cc:802] Training of tree  101/300 (tree index:100) done accuracy:0.86447 logloss:0.846556
[INFO 24-05-17 15:29:25.1351 UTC random_forest.cc:802] Training of tree  111/300 (tree index:110) done accuracy:0.864163 logloss:0.804944
[INFO 24-05-17 15:29:25.1967 UTC random_forest.cc:802] Training of tree  121/300 (tree index:120) done accuracy:0.864953 logloss:0.783092
[INFO 24-05-17 15:29:25.2593 UTC random_forest.cc:802] Training of tree  131/300 (tree index:130) done accuracy:0.865128 logloss:0.761509
[INFO 24-05-17 15:29:25.3165 UTC random_forest.cc:802] Training of tree  141/300 (tree index:140) done accuracy:0.864207 logloss:0.737278
[INFO 24-05-17 15:29:25.3691 UTC random_forest.cc:802] Training of tree  151/300 (tree index:149) done accuracy:0.864909 logloss:0.722793
[INFO 24-05-17 15:29:25.4256 UTC random_forest.cc:802] Training of tree  161/300 (tree index:159) done accuracy:0.864338 logloss:0.707122
[INFO 24-05-17 15:29:25.4817 UTC random_forest.cc:802] Training of tree  171/300 (tree index:171) done accuracy:0.864953 logloss:0.695653
[INFO 24-05-17 15:29:25.5345 UTC random_forest.cc:802] Training of tree  181/300 (tree index:181) done accuracy:0.864909 logloss:0.684699
[INFO 24-05-17 15:29:25.5848 UTC random_forest.cc:802] Training of tree  191/300 (tree index:190) done accuracy:0.864733 logloss:0.674939
[INFO 24-05-17 15:29:25.6356 UTC random_forest.cc:802] Training of tree  201/300 (tree index:200) done accuracy:0.864865 logloss:0.662798
[INFO 24-05-17 15:29:25.6880 UTC random_forest.cc:802] Training of tree  211/300 (tree index:209) done accuracy:0.86504 logloss:0.653042
[INFO 24-05-17 15:29:25.7417 UTC random_forest.cc:802] Training of tree  221/300 (tree index:220) done accuracy:0.864996 logloss:0.641847
[INFO 24-05-17 15:29:25.7911 UTC random_forest.cc:802] Training of tree  231/300 (tree index:230) done accuracy:0.864733 logloss:0.631173
[INFO 24-05-17 15:29:25.8225 UTC random_forest.cc:802] Training of tree  262/300 (tree index:261) done accuracy:0.864821 logloss:0.6299
[INFO 24-05-17 15:29:25.9500 UTC random_forest.cc:802] Training of tree  272/300 (tree index:271) done accuracy:0.865216 logloss:0.599614
[INFO 24-05-17 15:29:26.0030 UTC random_forest.cc:802] Training of tree  282/300 (tree index:281) done accuracy:0.865479 logloss:0.588677
[INFO 24-05-17 15:29:26.0873 UTC random_forest.cc:802] Training of tree  292/300 (tree index:291) done accuracy:0.865567 logloss:0.583081
[INFO 24-05-17 15:29:26.1583 UTC random_forest.cc:802] Training of tree  300/300 (tree index:299) done accuracy:0.865391 logloss:0.576064
[INFO 24-05-17 15:29:26.1735 UTC random_forest.cc:882] Final OOB metrics: accuracy:0.865391 logloss:0.576064
Model trained in 0:00:02.149436

How can I prevent this print from being generated every time I train?
My question is because I am doing the process many times, in a cycle, and after a while it takes up my memory.

I was looking for an input or variable like ‘verbose=False’, but I couldn’t identify it

thank you so much

I was looking for an input or variable like verbose=False, but I couldn’t identify it

New contributor

MRojas is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật