Attempting to calculate ratios in multiple columns in dataframe via a for loop

I’m using R to calculate simple ratios in columns and save those values in another table. The columns seen in the str included are every day in January and every hour of every day in January. For the purposes of this project, I have to calculate all of the hours of the month. I’m getting an appropriate table, but all the values are NA, so the logic or my attempt is failing somewhere and I’ve read all I can read. I’ve hit my limit on trying to find the issue and I need help.

library(dplyr)
library(purrr)

RATIO_2019_01_df <- test_df %>% 
                    select(AREA, RAW_STOP_COUNTS, RAW_DEVICE_COUNTS)

#error checking:
#print(names(test_df))

# Loop through the days and calculate ratios
# Note '1:31' in the for loop is the number of days in the month, adjust for each month
for (day in 1:31) {  
  day_column <- paste0("Day_", sprintf("%02d", day))

  # Loop through 24 hours
  for (hour in 1:24) {  
    hour_column <- paste0("Day_", sprintf("%02d", day), "_hr_", sprintf("%02d", hour))

    # Calculate the ratio for each hour and add it as a new column in ratio_df
    ratio_column <- paste0("Ratio_Day_", sprintf("%02d", day), "_hr_", sprintf("%02d", hour))
    RATIO_2019_01_df[[ratio_column]] <- ifelse(test_df[[day_column]] != 0,
                                            RATIO_2019_01_df[[hour_column]] / RATIO_2019_01_df[[day_column]], 0) 
                                            #Assign 0 (zero) for instances where the denominator = zero
  }
}

Here is the str (1 observation only for space)

structure(list(AREA = 484391216083, RAW_STOP_COUNTS = 13553, 
    RAW_DEVICE_COUNTS = 2494, Day_01 = 299, Day_02 = 311, Day_03 = 351, 
    Day_04 = 384, Day_05 = 376, Day_06 = 416, Day_07 = 322, Day_08 = 569, 
    Day_09 = 456, Day_10 = 490, Day_11 = 489, Day_12 = 381, Day_13 = 264, 
    Day_14 = 519, Day_15 = 476, Day_16 = 470, Day_17 = 570, Day_18 = 582, 
    Day_19 = 341, Day_20 = 321, Day_21 = 355, Day_22 = 521, Day_23 = 516, 
    Day_24 = 491, Day_25 = 533, Day_26 = 377, Day_27 = 363, Day_28 = 509, 
    Day_29 = 514, Day_30 = 460, Day_31 = 527, Day_1_hr_01 = 16, 
    Day_1_hr_02 = 13, Day_1_hr_03 = 15, Day_1_hr_04 = 3, Day_1_hr_05 = 6, 
    Day_1_hr_06 = 4, Day_1_hr_07 = 3, Day_1_hr_08 = 6, Day_1_hr_09 = 5, 
    Day_1_hr_10 = 7, Day_1_hr_11 = 14, Day_1_hr_12 = 16, Day_1_hr_13 = 16, 
    Day_1_hr_14 = 15, Day_1_hr_15 = 15, Day_1_hr_16 = 19, Day_1_hr_17 = 24, 
    Day_1_hr_18 = 24, Day_1_hr_19 = 15, Day_1_hr_20 = 23, Day_1_hr_21 = 11, 
    Day_1_hr_22 = 13, Day_1_hr_23 = 9, Day_1_hr_24 = 7, Day_2_hr_01 = 5, 
    Day_2_hr_02 = 3, Day_2_hr_03 = 4, Day_2_hr_04 = 8, Day_2_hr_05 = 5, 
    Day_2_hr_06 = 2, Day_2_hr_07 = 9, Day_2_hr_08 = 16, Day_2_hr_09 = 9, 
    Day_2_hr_10 = 18, Day_2_hr_11 = 12, Day_2_hr_12 = 13, Day_2_hr_13 = 12, 
    Day_2_hr_14 = 13, Day_2_hr_15 = 8, Day_2_hr_16 = 21, Day_2_hr_17 = 22, 
    Day_2_hr_18 = 39, Day_2_hr_19 = 28, Day_2_hr_20 = 27, Day_2_hr_21 = 16, 
    Day_2_hr_22 = 11, Day_2_hr_23 = 4, Day_2_hr_24 = 6, Day_3_hr_01 = 5, 
    Day_3_hr_02 = 1, Day_3_hr_03 = 9, Day_3_hr_04 = 4, Day_3_hr_05 = 5, 
    Day_3_hr_06 = 3, Day_3_hr_07 = 7, Day_3_hr_08 = 12, Day_3_hr_09 = 10, 
    Day_3_hr_10 = 9, Day_3_hr_11 = 11, Day_3_hr_12 = 12, Day_3_hr_13 = 12, 
    Day_3_hr_14 = 12, Day_3_hr_15 = 16, Day_3_hr_16 = 27, Day_3_hr_17 = 25, 
    Day_3_hr_18 = 35, Day_3_hr_19 = 40, Day_3_hr_20 = 37, Day_3_hr_21 = 19, 
    Day_3_hr_22 = 24, Day_3_hr_23 = 9, Day_3_hr_24 = 7, Day_4_hr_01 = 7, 
    Day_4_hr_02 = 6, Day_4_hr_03 = 3, Day_4_hr_04 = 2, Day_4_hr_05 = 3, 
    Day_4_hr_06 = 6, Day_4_hr_07 = 9, Day_4_hr_08 = 10, Day_4_hr_09 = 8, 
    Day_4_hr_10 = 8, Day_4_hr_11 = 15, Day_4_hr_12 = 21, Day_4_hr_13 = 28, 
    Day_4_hr_14 = 26, Day_4_hr_15 = 20, Day_4_hr_16 = 17, Day_4_hr_17 = 25, 
    Day_4_hr_18 = 55, Day_4_hr_19 = 30, Day_4_hr_20 = 29, Day_4_hr_21 = 17, 
    Day_4_hr_22 = 21, Day_4_hr_23 = 12, Day_4_hr_24 = 6, Day_5_hr_01 = 8, 
    Day_5_hr_02 = 9, Day_5_hr_03 = 8, Day_5_hr_04 = 5, Day_5_hr_05 = 5, 
    Day_5_hr_06 = 5, Day_5_hr_07 = 6, Day_5_hr_08 = 5, Day_5_hr_09 = 9, 
    Day_5_hr_10 = 12, Day_5_hr_11 = 17, Day_5_hr_12 = 24, Day_5_hr_13 = 27, 
    Day_5_hr_14 = 15, Day_5_hr_15 = 33, Day_5_hr_16 = 37, Day_5_hr_17 = 27, 
    Day_5_hr_18 = 20, Day_5_hr_19 = 27, Day_5_hr_20 = 25, Day_5_hr_21 = 18, 
    Day_5_hr_22 = 14, Day_5_hr_23 = 10, Day_5_hr_24 = 10, Day_6_hr_01 = 13, 
    Day_6_hr_02 = 7, Day_6_hr_03 = 11, Day_6_hr_04 = 6, Day_6_hr_05 = 9, 
    Day_6_hr_06 = 6, Day_6_hr_07 = 8, Day_6_hr_08 = 15, Day_6_hr_09 = 11, 
    Day_6_hr_10 = 16, Day_6_hr_11 = 13, Day_6_hr_12 = 11, Day_6_hr_13 = 26, 
    Day_6_hr_14 = 45, Day_6_hr_15 = 24, Day_6_hr_16 = 27, Day_6_hr_17 = 32, 
    Day_6_hr_18 = 25, Day_6_hr_19 = 27, Day_6_hr_20 = 23, Day_6_hr_21 = 17, 
    Day_6_hr_22 = 16, Day_6_hr_23 = 18, Day_6_hr_24 = 10, Day_7_hr_01 = 7, 
    Day_7_hr_02 = 5, Day_7_hr_03 = 5, Day_7_hr_04 = 3, Day_7_hr_05 = 2, 
    Day_7_hr_06 = 3, Day_7_hr_07 = 5, Day_7_hr_08 = 18, Day_7_hr_09 = 13, 
    Day_7_hr_10 = 14, Day_7_hr_11 = 12, Day_7_hr_12 = 15, Day_7_hr_13 = 25, 
    Day_7_hr_14 = 16, Day_7_hr_15 = 21, Day_7_hr_16 = 35, Day_7_hr_17 = 30, 
    Day_7_hr_18 = 39, Day_7_hr_19 = 13, Day_7_hr_20 = 12, Day_7_hr_21 = 6, 
    Day_7_hr_22 = 9, Day_7_hr_23 = 10, Day_7_hr_24 = 4, Day_8_hr_01 = 5, 
    Day_8_hr_02 = 3, Day_8_hr_03 = 19, Day_8_hr_04 = 4, Day_8_hr_05 = 5, 
    Day_8_hr_06 = 5, Day_8_hr_07 = 8, Day_8_hr_08 = 73, Day_8_hr_09 = 56, 
    Day_8_hr_10 = 18, Day_8_hr_11 = 19, Day_8_hr_12 = 14, Day_8_hr_13 = 13, 
    Day_8_hr_14 = 21, Day_8_hr_15 = 29, Day_8_hr_16 = 88, Day_8_hr_17 = 45, 
    Day_8_hr_18 = 34, Day_8_hr_19 = 29, Day_8_hr_20 = 29, Day_8_hr_21 = 20, 
    Day_8_hr_22 = 19, Day_8_hr_23 = 8, Day_8_hr_24 = 5, Day_9_hr_01 = 3, 
    Day_9_hr_02 = 2, Day_9_hr_03 = 0, Day_9_hr_04 = 1, Day_9_hr_05 = 4, 
    Day_9_hr_06 = 7, Day_9_hr_07 = 12, Day_9_hr_08 = 39, Day_9_hr_09 = 44, 
    Day_9_hr_10 = 9, Day_9_hr_11 = 11, Day_9_hr_12 = 13, Day_9_hr_13 = 12, 
    Day_9_hr_14 = 15, Day_9_hr_15 = 15, Day_9_hr_16 = 73, Day_9_hr_17 = 47, 
    Day_9_hr_18 = 48, Day_9_hr_19 = 27, Day_9_hr_20 = 24, Day_9_hr_21 = 24, 
    Day_9_hr_22 = 13, Day_9_hr_23 = 10, Day_9_hr_24 = 3, Day_10_hr_01 = 2, 
    Day_10_hr_02 = 2, Day_10_hr_03 = 2, Day_10_hr_04 = 1, Day_10_hr_05 = 2, 
    Day_10_hr_06 = 3, Day_10_hr_07 = 8, Day_10_hr_08 = 51, Day_10_hr_09 = 36, 
    Day_10_hr_10 = 6, Day_10_hr_11 = 13, Day_10_hr_12 = 17, Day_10_hr_13 = 18, 
    Day_10_hr_14 = 17, Day_10_hr_15 = 19, Day_10_hr_16 = 80, 
    Day_10_hr_17 = 56, Day_10_hr_18 = 57, Day_10_hr_19 = 31, 
    Day_10_hr_20 = 27, Day_10_hr_21 = 21, Day_10_hr_22 = 8, Day_10_hr_23 = 9, 
    Day_10_hr_24 = 4, Day_11_hr_01 = 4, Day_11_hr_02 = 5, Day_11_hr_03 = 2, 
    Day_11_hr_04 = 2, Day_11_hr_05 = 2, Day_11_hr_06 = 1, Day_11_hr_07 = 12, 
    Day_11_hr_08 = 37, Day_11_hr_09 = 38, Day_11_hr_10 = 16, 
    Day_11_hr_11 = 10, Day_11_hr_12 = 15, Day_11_hr_13 = 17, 
    Day_11_hr_14 = 20, Day_11_hr_15 = 28, Day_11_hr_16 = 67, 
    Day_11_hr_17 = 51, Day_11_hr_18 = 47, Day_11_hr_19 = 28, 
    Day_11_hr_20 = 25, Day_11_hr_21 = 27, Day_11_hr_22 = 17, 
    Day_11_hr_23 = 15, Day_11_hr_24 = 3, Day_12_hr_01 = 4, Day_12_hr_02 = 5, 
    Day_12_hr_03 = 2, Day_12_hr_04 = 7, Day_12_hr_05 = 3, Day_12_hr_06 = 1, 
    Day_12_hr_07 = 3, Day_12_hr_08 = 10, Day_12_hr_09 = 9, Day_12_hr_10 = 13, 
    Day_12_hr_11 = 27, Day_12_hr_12 = 20, Day_12_hr_13 = 21, 
    Day_12_hr_14 = 50, Day_12_hr_15 = 28, Day_12_hr_16 = 16, 
    Day_12_hr_17 = 19, Day_12_hr_18 = 24, Day_12_hr_19 = 30, 
    Day_12_hr_20 = 16, Day_12_hr_21 = 24, Day_12_hr_22 = 22, 
    Day_12_hr_23 = 21, Day_12_hr_24 = 6, Day_13_hr_01 = 5, Day_13_hr_02 = 4, 
    Day_13_hr_03 = 2, Day_13_hr_04 = 2, Day_13_hr_05 = 2, Day_13_hr_06 = 1, 
    Day_13_hr_07 = 4, Day_13_hr_08 = 0, Day_13_hr_09 = 7, Day_13_hr_10 = 11, 
    Day_13_hr_11 = 16, Day_13_hr_12 = 13, Day_13_hr_13 = 20, 
    Day_13_hr_14 = 16, Day_13_hr_15 = 24, Day_13_hr_16 = 27, 
    Day_13_hr_17 = 18, Day_13_hr_18 = 22, Day_13_hr_19 = 18, 
    Day_13_hr_20 = 18, Day_13_hr_21 = 15, Day_13_hr_22 = 13, 
    Day_13_hr_23 = 4, Day_13_hr_24 = 2, Day_14_hr_01 = 2, Day_14_hr_02 = 2, 
    Day_14_hr_03 = 0, Day_14_hr_04 = 1, Day_14_hr_05 = 0, Day_14_hr_06 = 3, 
    Day_14_hr_07 = 8, Day_14_hr_08 = 58, Day_14_hr_09 = 66, Day_14_hr_10 = 15, 
    Day_14_hr_11 = 9, Day_14_hr_12 = 12, Day_14_hr_13 = 12, Day_14_hr_14 = 17, 
    Day_14_hr_15 = 25, Day_14_hr_16 = 72, Day_14_hr_17 = 41, 
    Day_14_hr_18 = 57, Day_14_hr_19 = 36, Day_14_hr_20 = 23, 
    Day_14_hr_21 = 27, Day_14_hr_22 = 23, Day_14_hr_23 = 5, Day_14_hr_24 = 5, 
    Day_15_hr_01 = 5, Day_15_hr_02 = 4, Day_15_hr_03 = 3, Day_15_hr_04 = 0, 
    Day_15_hr_05 = 3, Day_15_hr_06 = 2, Day_15_hr_07 = 4, Day_15_hr_08 = 45, 
    Day_15_hr_09 = 43, Day_15_hr_10 = 12, Day_15_hr_11 = 7, Day_15_hr_12 = 19, 
    Day_15_hr_13 = 12, Day_15_hr_14 = 11, Day_15_hr_15 = 21, 
    Day_15_hr_16 = 80, Day_15_hr_17 = 46, Day_15_hr_18 = 55, 
    Day_15_hr_19 = 26, Day_15_hr_20 = 20, Day_15_hr_21 = 26, 
    Day_15_hr_22 = 14, Day_15_hr_23 = 11, Day_15_hr_24 = 7, Day_16_hr_01 = 3, 
    Day_16_hr_02 = 1, Day_16_hr_03 = 1, Day_16_hr_04 = 1, Day_16_hr_05 = 1, 
    Day_16_hr_06 = 5, Day_16_hr_07 = 6, Day_16_hr_08 = 41, Day_16_hr_09 = 58, 
    Day_16_hr_10 = 10, Day_16_hr_11 = 12, Day_16_hr_12 = 15, 
    Day_16_hr_13 = 15, Day_16_hr_14 = 12, Day_16_hr_15 = 20, 
    Day_16_hr_16 = 84, Day_16_hr_17 = 51, Day_16_hr_18 = 41, 
    Day_16_hr_19 = 27, Day_16_hr_20 = 15, Day_16_hr_21 = 24, 
    Day_16_hr_22 = 16, Day_16_hr_23 = 5, Day_16_hr_24 = 6, Day_17_hr_01 = 2, 
    Day_17_hr_02 = 1, Day_17_hr_03 = 4, Day_17_hr_04 = 2, Day_17_hr_05 = 3, 
    Day_17_hr_06 = 3, Day_17_hr_07 = 9, Day_17_hr_08 = 62, Day_17_hr_09 = 47, 
    Day_17_hr_10 = 13, Day_17_hr_11 = 15, Day_17_hr_12 = 14, 
    Day_17_hr_13 = 13, Day_17_hr_14 = 29, Day_17_hr_15 = 24, 
    Day_17_hr_16 = 70, Day_17_hr_17 = 56, Day_17_hr_18 = 53, 
    Day_17_hr_19 = 51, Day_17_hr_20 = 29, Day_17_hr_21 = 23, 
    Day_17_hr_22 = 23, Day_17_hr_23 = 14, Day_17_hr_24 = 10, 
    Day_18_hr_01 = 6, Day_18_hr_02 = 7, Day_18_hr_03 = 8, Day_18_hr_04 = 4, 
    Day_18_hr_05 = 6, Day_18_hr_06 = 5, Day_18_hr_07 = 15, Day_18_hr_08 = 46, 
    Day_18_hr_09 = 44, Day_18_hr_10 = 10, Day_18_hr_11 = 13, 
    Day_18_hr_12 = 20, Day_18_hr_13 = 22, Day_18_hr_14 = 19, 
    Day_18_hr_15 = 31, Day_18_hr_16 = 79, Day_18_hr_17 = 55, 
    Day_18_hr_18 = 55, Day_18_hr_19 = 38, Day_18_hr_20 = 36, 
    Day_18_hr_21 = 20, Day_18_hr_22 = 21, Day_18_hr_23 = 14, 
    Day_18_hr_24 = 8, Day_19_hr_01 = 7, Day_19_hr_02 = 8, Day_19_hr_03 = 3, 
    Day_19_hr_04 = 7, Day_19_hr_05 = 5, Day_19_hr_06 = 4, Day_19_hr_07 = 1, 
    Day_19_hr_08 = 5, Day_19_hr_09 = 13, Day_19_hr_10 = 20, Day_19_hr_11 = 17, 
    Day_19_hr_12 = 17, Day_19_hr_13 = 20, Day_19_hr_14 = 20, 
    Day_19_hr_15 = 21, Day_19_hr_16 = 32, Day_19_hr_17 = 37, 
    Day_19_hr_18 = 22, Day_19_hr_19 = 14, Day_19_hr_20 = 18, 
    Day_19_hr_21 = 17, Day_19_hr_22 = 17, Day_19_hr_23 = 8, Day_19_hr_24 = 8, 
    Day_20_hr_01 = 3, Day_20_hr_02 = 7, Day_20_hr_03 = 7, Day_20_hr_04 = 4, 
    Day_20_hr_05 = 6, Day_20_hr_06 = 2, Day_20_hr_07 = 2, Day_20_hr_08 = 5, 
    Day_20_hr_09 = 12, Day_20_hr_10 = 14, Day_20_hr_11 = 14, 
    Day_20_hr_12 = 7, Day_20_hr_13 = 30, Day_20_hr_14 = 30, Day_20_hr_15 = 32, 
    Day_20_hr_16 = 27, Day_20_hr_17 = 25, Day_20_hr_18 = 21, 
    Day_20_hr_19 = 21, Day_20_hr_20 = 18, Day_20_hr_21 = 6, Day_20_hr_22 = 14, 
    Day_20_hr_23 = 8, Day_20_hr_24 = 6, Day_21_hr_01 = 8, Day_21_hr_02 = 3, 
    Day_21_hr_03 = 1, Day_21_hr_04 = 0, Day_21_hr_05 = 1, Day_21_hr_06 = 2, 
    Day_21_hr_07 = 0, Day_21_hr_08 = 7, Day_21_hr_09 = 4, Day_21_hr_10 = 19, 
    Day_21_hr_11 = 16, Day_21_hr_12 = 19, Day_21_hr_13 = 26, 
    Day_21_hr_14 = 33, Day_21_hr_15 = 30, Day_21_hr_16 = 31, 
    Day_21_hr_17 = 27, Day_21_hr_18 = 32, Day_21_hr_19 = 28, 
    Day_21_hr_20 = 19, Day_21_hr_21 = 19, Day_21_hr_22 = 14, 
    Day_21_hr_23 = 10, Day_21_hr_24 = 6, Day_22_hr_01 = 7, Day_22_hr_02 = 2, 
    Day_22_hr_03 = 3, Day_22_hr_04 = 2, Day_22_hr_05 = 1, Day_22_hr_06 = 3, 
    Day_22_hr_07 = 8, Day_22_hr_08 = 53, Day_22_hr_09 = 53, Day_22_hr_10 = 16, 
    Day_22_hr_11 = 15, Day_22_hr_12 = 15, Day_22_hr_13 = 10, 
    Day_22_hr_14 = 23, Day_22_hr_15 = 32, Day_22_hr_16 = 64, 
    Day_22_hr_17 = 48, Day_22_hr_18 = 53, Day_22_hr_19 = 34, 
    Day_22_hr_20 = 28, Day_22_hr_21 = 19, Day_22_hr_22 = 16, 
    Day_22_hr_23 = 11, Day_22_hr_24 = 5, Day_23_hr_01 = 2, Day_23_hr_02 = 4, 
    Day_23_hr_03 = 7, Day_23_hr_04 = 0, Day_23_hr_05 = 2, Day_23_hr_06 = 4, 
    Day_23_hr_07 = 7, Day_23_hr_08 = 62, Day_23_hr_09 = 40, Day_23_hr_10 = 11, 
    Day_23_hr_11 = 10, Day_23_hr_12 = 13, Day_23_hr_13 = 19, 
    Day_23_hr_14 = 26, Day_23_hr_15 = 28, Day_23_hr_16 = 70, 
    Day_23_hr_17 = 41, Day_23_hr_18 = 54, Day_23_hr_19 = 35, 
    Day_23_hr_20 = 31, Day_23_hr_21 = 21, Day_23_hr_22 = 14, 
    Day_23_hr_23 = 13, Day_23_hr_24 = 2, Day_24_hr_01 = 2, Day_24_hr_02 = 2, 
    Day_24_hr_03 = 3, Day_24_hr_04 = 1, Day_24_hr_05 = 2, Day_24_hr_06 = 4, 
    Day_24_hr_07 = 10, Day_24_hr_08 = 52, Day_24_hr_09 = 39, 
    Day_24_hr_10 = 13, Day_24_hr_11 = 18, Day_24_hr_12 = 11, 
    Day_24_hr_13 = 14, Day_24_hr_14 = 12, Day_24_hr_15 = 25, 
    Day_24_hr_16 = 58, Day_24_hr_17 = 42, Day_24_hr_18 = 65, 
    Day_24_hr_19 = 48, Day_24_hr_20 = 21, Day_24_hr_21 = 23, 
    Day_24_hr_22 = 11, Day_24_hr_23 = 8, Day_24_hr_24 = 7, Day_25_hr_01 = 4, 
    Day_25_hr_02 = 3, Day_25_hr_03 = 4, Day_25_hr_04 = 3, Day_25_hr_05 = 4, 
    Day_25_hr_06 = 2, Day_25_hr_07 = 4, Day_25_hr_08 = 44, Day_25_hr_09 = 52, 
    Day_25_hr_10 = 13, Day_25_hr_11 = 15, Day_25_hr_12 = 12, 
    Day_25_hr_13 = 31, Day_25_hr_14 = 16, Day_25_hr_15 = 35, 
    Day_25_hr_16 = 81, Day_25_hr_17 = 47, Day_25_hr_18 = 42, 
    Day_25_hr_19 = 26, Day_25_hr_20 = 27, Day_25_hr_21 = 35, 
    Day_25_hr_22 = 11, Day_25_hr_23 = 16, Day_25_hr_24 = 6, Day_26_hr_01 = 7, 
    Day_26_hr_02 = 7, Day_26_hr_03 = 3, Day_26_hr_04 = 6, Day_26_hr_05 = 5, 
    Day_26_hr_06 = 7, Day_26_hr_07 = 9, Day_26_hr_08 = 7, Day_26_hr_09 = 9, 
    Day_26_hr_10 = 17, Day_26_hr_11 = 26, Day_26_hr_12 = 23, 
    Day_26_hr_13 = 18, Day_26_hr_14 = 23, Day_26_hr_15 = 24, 
    Day_26_hr_16 = 32, Day_26_hr_17 = 25, Day_26_hr_18 = 24, 
    Day_26_hr_19 = 22, Day_26_hr_20 = 23, Day_26_hr_21 = 14, 
    Day_26_hr_22 = 16, Day_26_hr_23 = 17, Day_26_hr_24 = 13, 
    Day_27_hr_01 = 10, Day_27_hr_02 = 10, Day_27_hr_03 = 8, Day_27_hr_04 = 7, 
    Day_27_hr_05 = 5, Day_27_hr_06 = 5, Day_27_hr_07 = 10, Day_27_hr_08 = 10, 
    Day_27_hr_09 = 11, Day_27_hr_10 = 8, Day_27_hr_11 = 12, Day_27_hr_12 = 19, 
    Day_27_hr_13 = 33, Day_27_hr_14 = 28, Day_27_hr_15 = 21, 
    Day_27_hr_16 = 34, Day_27_hr_17 = 24, Day_27_hr_18 = 31, 
    Day_27_hr_19 = 23, Day_27_hr_20 = 17, Day_27_hr_21 = 12, 
    Day_27_hr_22 = 12, Day_27_hr_23 = 7, Day_27_hr_24 = 6, Day_28_hr_01 = 6, 
    Day_28_hr_02 = 5, Day_28_hr_03 = 0, Day_28_hr_04 = 1, Day_28_hr_05 = 9, 
    Day_28_hr_06 = 2, Day_28_hr_07 = 5, Day_28_hr_08 = 48, Day_28_hr_09 = 44, 
    Day_28_hr_10 = 12, Day_28_hr_11 = 11, Day_28_hr_12 = 18, 
    Day_28_hr_13 = 13, Day_28_hr_14 = 22, Day_28_hr_15 = 36, 
    Day_28_hr_16 = 70, Day_28_hr_17 = 45, Day_28_hr_18 = 48, 
    Day_28_hr_19 = 33, Day_28_hr_20 = 28, Day_28_hr_21 = 17, 
    Day_28_hr_22 = 20, Day_28_hr_23 = 9, Day_28_hr_24 = 7, Day_29_hr_01 = 4, 
    Day_29_hr_02 = 3, Day_29_hr_03 = 2, Day_29_hr_04 = 2, Day_29_hr_05 = 2, 
    Day_29_hr_06 = 3, Day_29_hr_07 = 7, Day_29_hr_08 = 61, Day_29_hr_09 = 27, 
    Day_29_hr_10 = 9, Day_29_hr_11 = 14, Day_29_hr_12 = 14, Day_29_hr_13 = 15, 
    Day_29_hr_14 = 34, Day_29_hr_15 = 38, Day_29_hr_16 = 73, 
    Day_29_hr_17 = 45, Day_29_hr_18 = 52, Day_29_hr_19 = 33, 
    Day_29_hr_20 = 27, Day_29_hr_21 = 17, Day_29_hr_22 = 23, 
    Day_29_hr_23 = 3, Day_29_hr_24 = 6, Day_30_hr_01 = 3, Day_30_hr_02 = 0, 
    Day_30_hr_03 = 0, Day_30_hr_04 = 4, Day_30_hr_05 = 0, Day_30_hr_06 = 1, 
    Day_30_hr_07 = 4, Day_30_hr_08 = 49, Day_30_hr_09 = 48, Day_30_hr_10 = 14, 
    Day_30_hr_11 = 10, Day_30_hr_12 = 16, Day_30_hr_13 = 14, 
    Day_30_hr_14 = 12, Day_30_hr_15 = 20, Day_30_hr_16 = 61, 
    Day_30_hr_17 = 40, Day_30_hr_18 = 43, Day_30_hr_19 = 35, 
    Day_30_hr_20 = 28, Day_30_hr_21 = 22, Day_30_hr_22 = 20, 
    Day_30_hr_23 = 7, Day_30_hr_24 = 9, Day_31_hr_01 = 9, Day_31_hr_02 = 7, 
    Day_31_hr_03 = 8, Day_31_hr_04 = 10, Day_31_hr_05 = 8, Day_31_hr_06 = 11, 
    Day_31_hr_07 = 7, Day_31_hr_08 = 54, Day_31_hr_09 = 40, Day_31_hr_10 = 12, 
    Day_31_hr_11 = 11, Day_31_hr_12 = 16, Day_31_hr_13 = 15, 
    Day_31_hr_14 = 20, Day_31_hr_15 = 22, Day_31_hr_16 = 80, 
    Day_31_hr_17 = 44, Day_31_hr_18 = 41, Day_31_hr_19 = 30, 
    Day_31_hr_20 = 17, Day_31_hr_21 = 20, Day_31_hr_22 = 27, 
    Day_31_hr_23 = 7, Day_31_hr_24 = 11), row.names = c(NA, -1L
), class = c("tbl_df", "tbl", "data.frame"))

8

It’s fine to output in wide format, what’s challenging is to analyze in wide format. Your problem will be simpler if you can get the data (preferably upstream) into longer format. If it were in long format, you’d just use df |> mutate(ratio = hr_val / day_val).

If you only have the data in wide format, and you need to output to wide format, I think it’s still simpler to reshape long, do your calcs, and then reshape wide again.

Reshape long:

library(tidyverse)
df_long <- df |> # df = dput data in question
  pivot_longer(-(AREA:RAW_DEVICE_COUNTS))

Now we have a long table where some rows relate to daily totals and others are hourly numbers. I’ll split those into separate tables, since each “days” value should be linked to 24 “hours” values. That sounds like a join.

(Here, I also convert the day number (e.g. Day_1 to 1) so it will more easily match up with columns like Day_01_hr_01, which pads the day count when it’s a single digit.)

df_days <- df_long |>
  filter(str_length(name) <= 6) |>
  rename(day = name, day_val = value) |>
  mutate(across(day, parse_number))

df_hours <- df_long |>
  filter(str_length(name) > 6) |>
  separate(name, into = c("day", "hour"), sep = "(?<=[0-9])_") |>
  mutate(across(day:hour, parse_number)) |>
  rename(hr_val = value)

With all those preliminaries out of the way to get our data into two “tidy” (aka “3rd normal form”) tables, it’s very simple to combine the two and calculate the ratio:

df_hours |>
  left_join(df_days) |>
  mutate(ratio = hr_val / day_val)

I’m unclear on what the required output format is, but I presume some variation of using pivot_wider would suffice. For example, adding this after the code above:

... |> 
select(-(hr_val:day_val)) |>
pivot_wider(names_from = c(day, hour), 
          names_glue = "Day_{day}_hr_{hour}",
          values_from = ratio)` 

…yields a wide table of ratios like this:

      AREA RAW_STOP_COUNTS RAW_DEVICE_COUNTS Day_1_hr_1 Day_1_hr_2 Day_1_hr_3 Day_1_hr_4 Day_1_hr_5 Day_1_hr_6 Day_1_hr_7 Day_1_hr_8 Day_1_hr_9 Day_1_hr_10
         <dbl>           <dbl>             <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>       <dbl>
1 484391216083           13553              2494     0.0535     0.0435     0.0502     0.0100     0.0201     0.0134     0.0100     0.0201     0.0167      0.0234

Two problems:

1: Presumably you have a typo in your for loop on line 11 in the ifelse statement:

RATIO_2019_01_df[[ratio_column]] <- ifelse(test_df[[day_column]] != 0,
               RATIO_2019_01_df[[hour_column]] / RATIO_2019_01_df[[day_column]], 0)

should be:

RATIO_2019_01_df[[ratio_column]] <- ifelse(test_df[[day_column]] != 0,
                   test_df[[hour_column]] / test_df[[day_column]], 0)

(i.e. change RATIO_2019_01_df to test_df).

2: On line 6, in the first sprintf call:

hour_column <- paste0("Day_", sprintf("%02d", day), "_hr_", sprintf("%02d", hour))

can be simplified to:

hour_column <- paste0("Day_",  day, "_hr_", sprintf("%02d", hour))

since your column names are “Day_1_hr_01”, “Day_1_hr_02”, etc. There’s only 1 digit after “Day_” for digits < 10 (not “Day_01_hr_01”, etc.).

With these changes, your code returns:

          AREA RAW_STOP_COUNTS RAW_DEVICE_COUNTS Ratio_Day_01_hr_01 Ratio_Day_01_hr_02 Ratio_Day_01_hr_03 Ratio_Day_01_hr_04 Ratio_Day_01_hr_05 Ratio_Day_01_hr_06 Ratio_Day_01_hr_07
         <dbl>           <dbl>             <dbl>              <dbl>              <dbl>              <dbl>              <dbl>              <dbl>              <dbl>              <dbl>
1 484391216083           13553              2494             0.0535             0.0435             0.0502             0.0100             0.0201             0.0134             0.0100

1

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật