I am trying to create a mesh (.stl file) that follows a bezier curve. I have succesfully created the side face but I have trouble creating the top and bottom faces. The problem is that the bezier curve is quite complex (the shape can be concave or convex) and the faces i have managed to create don’t follow the curve exactly (I will add a picture). Is there a way to make the top and bottom faces follow the curve exactly and also fill the shape (i don’t want it to be hollow).
This is the code I use to create the mesh.
import numpy as np
import trimesh
import shape
from scipy.spatial import Delaunay
def create_mesh(x, y, z_bottom, z_top):
""" Create a mesh from the bezier curve points """
# Create vertices for the bottom and top surfaces
vertices = np.vstack((np.column_stack((x, y, z_bottom)), np.column_stack((x, y, z_top))))
num_points = len(x)
# Create faces
faces = []
for i in range(num_points - 1):
# Side face
faces.append([i, i + 1, num_points + i + 1])
faces.append([i, num_points + i + 1, num_points + i])
# Closing the side face
faces.append([num_points - 1, 0, num_points])
faces.append([num_points - 1, num_points, num_points + (num_points - 1)])
# Top face
top_vertices = np.column_stack((x, y, z_top))
top = Delaunay(top_vertices[:, :2])
top_faces = top.simplices + num_points
# Bottom face
bottom_vertices = np.column_stack((x, y, z_bottom))
bottom = Delaunay(bottom_vertices[:, :2])
bottom_faces = bottom.simplices
# Combine faces
faces = np.array(faces + top_faces.tolist() + bottom_faces.tolist())
# Create the mesh
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
return mesh
And this is the shape.py code i use to get the curve.
import numpy as np
from scipy.special import binom
from scipy.interpolate import UnivariateSpline
import matplotlib.pyplot as plt
bernstein = lambda n, k, t: binom(n,k)* t**k * (1.-t)**(n-k)
def bezier(points, num=200):
N = len(points)
t = np.linspace(0, 1, num=num)
curve = np.zeros((num, 2))
for i in range(N):
curve += np.outer(bernstein(N - 1, i, t), points[i])
return curve
class Segment():
def __init__(self, p1, p2, angle1, angle2, **kw):
self.p1 = p1; self.p2 = p2
self.angle1 = angle1; self.angle2 = angle2
self.numpoints = kw.get("numpoints", 100)
r = kw.get("r", 0.3)
d = np.sqrt(np.sum((self.p2-self.p1)**2))
self.r = r*d
self.p = np.zeros((4,2))
self.p[0,:] = self.p1[:]
self.p[3,:] = self.p2[:]
self.calc_intermediate_points(self.r)
def calc_intermediate_points(self,r):
self.p[1,:] = self.p1 + np.array([self.r*np.cos(self.angle1),
self.r*np.sin(self.angle1)])
self.p[2,:] = self.p2 + np.array([self.r*np.cos(self.angle2+np.pi),
self.r*np.sin(self.angle2+np.pi)])
self.curve = bezier(self.p,self.numpoints)
def get_curve(points, **kw):
segments = []
for i in range(len(points)-1):
seg = Segment(points[i,:2], points[i+1,:2], points[i,2],points[i+1,2],**kw)
segments.append(seg)
curve = np.concatenate([s.curve[:-1] for s in segments])
# curve = curve[::-1]
return segments, curve
def ccw_sort(p):
d = p-np.mean(p,axis=0)
s = np.arctan2(d[:,0], d[:,1])
return p[np.argsort(s),:]
def get_bezier_curve(rad=0.2, edgy=0, height=1.0):
""" Given an array of points *a*, create a 3D curve through those points.
*rad* controls the distance of control points.
*edgy* controls how "edgy" the curve is.
*height* is the fixed height to extend in the z direction."""
a = get_random_points(n=7, scale=1)
p = np.arctan(edgy) / np.pi + 0.5
a = ccw_sort(a)
a = np.append(a, np.atleast_2d(a[0, :]), axis=0)
d = np.diff(a, axis=0)
ang = np.arctan2(d[:, 1], d[:, 0])
f = lambda ang: (ang >= 0) * ang + (ang < 0) * (ang + 2 * np.pi)
ang = f(ang)
ang1 = ang
ang2 = np.roll(ang, 1)
ang = p * ang1 + (1 - p) * ang2 + (np.abs(ang2 - ang1) > np.pi) * np.pi
ang = np.append(ang, [ang[0]])
a = np.append(a, np.atleast_2d(ang).T, axis=1)
# Generate 2D curve
s, c = get_curve(a, r=rad, method="var")
x, y = c.T
# Create 3D vertices by extending in the z direction
z = np.zeros_like(x)
z_top = np.full_like(x, height)
# Combine into a 3D array
return x, y, z, z_top, a
def get_random_points(n=5, scale=0.8, mindst=None, rec=0):
""" create n random points in the unit square, which are *mindst*
apart, then scale them."""
mindst = mindst or .7/n
a = np.random.rand(n,2)
d = np.sqrt(np.sum(np.diff(ccw_sort(a), axis=0), axis=1)**2)
if np.all(d >= mindst) or rec>=200:
return a*scale
else:
return get_random_points(n=n, scale=scale, mindst=mindst, rec=rec+1)
def get_curvature(x, y=None, error=0.1):
if y is None:
x, y = x.real, x.imag
t = np.arange(x.shape[0])
std = error * np.ones_like(x)
fx = UnivariateSpline(t, x, k=4, w=1 / np.sqrt(std))
fy = UnivariateSpline(t, y, k=4, w=1 / np.sqrt(std))
xˈ = fx.derivative(1)(t)
xˈˈ = fx.derivative(2)(t)
yˈ = fy.derivative(1)(t)
yˈˈ = fy.derivative(2)(t)
curvature = (xˈ* yˈˈ - yˈ* xˈˈ) / np.power(xˈ** 2 + yˈ** 2, 3 / 2)
return curvature
This is an example of what i get (just adding the top and bottom faces and not filling the object). As you can see the top and bottom faces don’t match exactly.