acl for yarn capacity scheduler is not working

I have a cluster hadoop (1 master 1 slave) and I divided the resources into 2 queue: a and b then i use Acls to grant permissions to user1 can submit queue a, user2 can use queue b. I try run [user2@master ~]$spark-shell --master yarn cluster --queue a then it worked.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>[user2@master ~]$spark-shell --master yarn cluster --queue a
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
24/09/12 15:00:45 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
24/09/12 15:00:45 WARN SparkConf: Note that spark.local.dir will be overridden by the value set by the cluster manager (via SPARK_LOCAL_DIRS in mesos/standalone/kubernetes and LOCAL_DIRS in YARN).
24/09/12 15:00:47 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
Spark context Web UI available at http://master:4040
Spark context available as 'sc' (master = yarn, app id = application_1726127970185_0001).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_ / _ / _ `/ __/ '_/
/___/ .__/_,_/_/ /_/_ version 3.5.2
/_/
Using Scala version 2.12.18 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_202)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
</code>
<code>[user2@master ~]$spark-shell --master yarn cluster --queue a Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 24/09/12 15:00:45 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 24/09/12 15:00:45 WARN SparkConf: Note that spark.local.dir will be overridden by the value set by the cluster manager (via SPARK_LOCAL_DIRS in mesos/standalone/kubernetes and LOCAL_DIRS in YARN). 24/09/12 15:00:47 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME. Spark context Web UI available at http://master:4040 Spark context available as 'sc' (master = yarn, app id = application_1726127970185_0001). Spark session available as 'spark'. Welcome to ____ __ / __/__ ___ _____/ /__ _ / _ / _ `/ __/ '_/ /___/ .__/_,_/_/ /_/_ version 3.5.2 /_/ Using Scala version 2.12.18 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_202) Type in expressions to have them evaluated. Type :help for more information. scala> </code>
[user2@master ~]$spark-shell --master yarn cluster --queue a
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
24/09/12 15:00:45 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
24/09/12 15:00:45 WARN SparkConf: Note that spark.local.dir will be overridden by the value set by the cluster manager (via SPARK_LOCAL_DIRS in mesos/standalone/kubernetes and LOCAL_DIRS in YARN).
24/09/12 15:00:47 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
Spark context Web UI available at http://master:4040
Spark context available as 'sc' (master = yarn, app id = application_1726127970185_0001).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _ / _ / _ `/ __/  '_/
   /___/ .__/_,_/_/ /_/_   version 3.5.2
      /_/

Using Scala version 2.12.18 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_202)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

this is my yarn-site.xml:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code><configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>xxx.xx.xx.90</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>8</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>16384</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>16384</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>512</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.nodemanager.address</name>
<value>xxx.xx.xx.90:31189</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>xxx.xx.xx.90:8032</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/app/tmp</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/app/tmp</value>
</property>
<property>
<name>yarn.acl.enable</name>
<value>true</value>
</property>
<property>
<name>yarn.admin.acl</name>
<value>hadoop</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
</configuration>
</code>
<code><configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> <property> <name>yarn.resourcemanager.hostname</name> <value>xxx.xx.xx.90</value> </property> <property> <name>yarn.nodemanager.resource.cpu-vcores</name> <value>8</value> </property> <property> <name>yarn.nodemanager.resource.memory-mb</name> <value>16384</value> </property> <property> <name>yarn.scheduler.maximum-allocation-mb</name> <value>16384</value> </property> <property> <name>yarn.scheduler.minimum-allocation-mb</name> <value>512</value> </property> <property> <name>yarn.nodemanager.vmem-check-enabled</name> <value>false</value> </property> <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> <property> <name>yarn.nodemanager.address</name> <value>xxx.xx.xx.90:31189</value> </property> <property> <name>yarn.resourcemanager.address</name> <value>xxx.xx.xx.90:8032</value> </property> <property> <name>yarn.nodemanager.vmem-check-enabled</name> <value>false</value> </property> <property> <name>yarn.nodemanager.local-dirs</name> <value>/app/tmp</value> </property> <property> <name>yarn.nodemanager.log-dirs</name> <value>/app/tmp</value> </property> <property> <name>yarn.acl.enable</name> <value>true</value> </property> <property> <name>yarn.admin.acl</name> <value>hadoop</value> </property> <property> <name>yarn.resourcemanager.scheduler.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value> </property> </configuration> </code>
<configuration>

  <property>
      <name>yarn.nodemanager.aux-services</name>
      <value>mapreduce_shuffle</value>
  </property>

  <property>
    <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
    <value>org.apache.hadoop.mapred.ShuffleHandler</value>
  </property>

  <property>
    <name>yarn.resourcemanager.hostname</name>
    <value>xxx.xx.xx.90</value>
  </property>

  <property>
    <name>yarn.nodemanager.resource.cpu-vcores</name>
    <value>8</value>
  </property>

  <property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>16384</value>
  </property>

  <property>
    <name>yarn.scheduler.maximum-allocation-mb</name>
    <value>16384</value>
  </property>

  <property>
    <name>yarn.scheduler.minimum-allocation-mb</name>
    <value>512</value>
  </property>

  <property>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
  </property>
               
  <property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
  </property>

    <property>
      <name>yarn.nodemanager.address</name>
      <value>xxx.xx.xx.90:31189</value>
  </property>

  <property>
    <name>yarn.resourcemanager.address</name>
    <value>xxx.xx.xx.90:8032</value>
  </property>

  <property>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
  </property>

  <property>
      <name>yarn.nodemanager.local-dirs</name>
      <value>/app/tmp</value>
  </property>

  <property>
      <name>yarn.nodemanager.log-dirs</name>
      <value>/app/tmp</value>
  </property>

  <property>
      <name>yarn.acl.enable</name>
      <value>true</value>
  </property>

  <property>
    <name>yarn.admin.acl</name>
    <value>hadoop</value>
  </property>
  
  <property>
      <name>yarn.resourcemanager.scheduler.class</name>
      <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
  </property>

</configuration>

this is capacity-scheduler.xml:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code><configuration>
<property>
<name>yarn.scheduler.capacity.maximum-applications</name>
<value>10000</value>
<description>
Maximum number of applications that can be pending and running.
</description>
</property>
<property>
<name>yarn.scheduler.capacity.maximum-am-resource-percent</name>
<value>0.01</value>
<description>
Maximum percent of resources in the cluster which can be used to run
application masters i.e. controls number of concurrent running
applications.
</description>
</property>
<property>
<name>yarn.scheduler.capacity.resource-calculator</name>
<value>org.apache.hadoop.yarn.util.resource.DefaultResourceCalculator</value>
<description>
The ResourceCalculator implementation to be used to compare
Resources in the scheduler.
The default i.e. DefaultResourceCalculator only uses Memory while
DominantResourceCalculator uses dominant-resource to compare
multi-dimensional resources such as Memory, CPU etc.
</description>
</property>
<property>
<name>yarn.scheduler.capacity.user.max-parallel-apps</name>
<value>100</value>
<description>
Maximum number of applications that can be running.
</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>a,b</value>
<description>The queues at the this level (root is the root queue).</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.a.capacity</name>
<value>40</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.b.capacity</name>
<value>60</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.a.maximum-capacity</name>
<value>40</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.b.maximum-capacity</name>
<value>60</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.a.state</name>
<value>RUNNING</value>
<description>
The state of the default queue. State can be one of RUNNING or STOPPED.
</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.b.state</name>
<value>RUNNING</value>
<description>
The state of the default queue. State can be one of RUNNING or STOPPED.
</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.a.acl_submit_applications</name>
<value>user1</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.a.acl_administer_queue</name>
<value>user1</value>
<description>
The ACL of who can administer jobs on the default queue.
</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.b.acl_submit_applications</name>
<value>user2</value>
<description>
The ACL of who can submit jobs to the default queue.
</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.b.acl_administer_queue</name>
<value>user2</value>
<description>
The ACL of who can administer jobs on the default queue.
</description>
</property>
</configuration>
</code>
<code><configuration> <property> <name>yarn.scheduler.capacity.maximum-applications</name> <value>10000</value> <description> Maximum number of applications that can be pending and running. </description> </property> <property> <name>yarn.scheduler.capacity.maximum-am-resource-percent</name> <value>0.01</value> <description> Maximum percent of resources in the cluster which can be used to run application masters i.e. controls number of concurrent running applications. </description> </property> <property> <name>yarn.scheduler.capacity.resource-calculator</name> <value>org.apache.hadoop.yarn.util.resource.DefaultResourceCalculator</value> <description> The ResourceCalculator implementation to be used to compare Resources in the scheduler. The default i.e. DefaultResourceCalculator only uses Memory while DominantResourceCalculator uses dominant-resource to compare multi-dimensional resources such as Memory, CPU etc. </description> </property> <property> <name>yarn.scheduler.capacity.user.max-parallel-apps</name> <value>100</value> <description> Maximum number of applications that can be running. </description> </property> <property> <name>yarn.scheduler.capacity.root.queues</name> <value>a,b</value> <description>The queues at the this level (root is the root queue).</description> </property> <property> <name>yarn.scheduler.capacity.root.a.capacity</name> <value>40</value> </property> <property> <name>yarn.scheduler.capacity.root.b.capacity</name> <value>60</value> </property> <property> <name>yarn.scheduler.capacity.root.a.maximum-capacity</name> <value>40</value> </property> <property> <name>yarn.scheduler.capacity.root.b.maximum-capacity</name> <value>60</value> </property> <property> <name>yarn.scheduler.capacity.root.a.state</name> <value>RUNNING</value> <description> The state of the default queue. State can be one of RUNNING or STOPPED. </description> </property> <property> <name>yarn.scheduler.capacity.root.b.state</name> <value>RUNNING</value> <description> The state of the default queue. State can be one of RUNNING or STOPPED. </description> </property> <property> <name>yarn.scheduler.capacity.root.a.acl_submit_applications</name> <value>user1</value> </property> <property> <name>yarn.scheduler.capacity.root.a.acl_administer_queue</name> <value>user1</value> <description> The ACL of who can administer jobs on the default queue. </description> </property> <property> <name>yarn.scheduler.capacity.root.b.acl_submit_applications</name> <value>user2</value> <description> The ACL of who can submit jobs to the default queue. </description> </property> <property> <name>yarn.scheduler.capacity.root.b.acl_administer_queue</name> <value>user2</value> <description> The ACL of who can administer jobs on the default queue. </description> </property> </configuration> </code>
<configuration>

  <property>
    <name>yarn.scheduler.capacity.maximum-applications</name>
    <value>10000</value>
    <description>
      Maximum number of applications that can be pending and running.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.maximum-am-resource-percent</name>
    <value>0.01</value>
    <description>
      Maximum percent of resources in the cluster which can be used to run 
      application masters i.e. controls number of concurrent running
      applications.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.resource-calculator</name>
    <value>org.apache.hadoop.yarn.util.resource.DefaultResourceCalculator</value>
    <description>
      The ResourceCalculator implementation to be used to compare 
      Resources in the scheduler.
      The default i.e. DefaultResourceCalculator only uses Memory while
      DominantResourceCalculator uses dominant-resource to compare 
      multi-dimensional resources such as Memory, CPU etc.
    </description>
  </property>
  
  <property>
    <name>yarn.scheduler.capacity.user.max-parallel-apps</name>
    <value>100</value>
    <description>
      Maximum number of applications that can be running.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.queues</name>
    <value>a,b</value>
    <description>The queues at the this level (root is the root queue).</description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.a.capacity</name>
    <value>40</value>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.b.capacity</name>
    <value>60</value>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.a.maximum-capacity</name>
    <value>40</value>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.b.maximum-capacity</name>
    <value>60</value>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.a.state</name>
    <value>RUNNING</value>
    <description>
      The state of the default queue. State can be one of RUNNING or STOPPED.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.b.state</name>
    <value>RUNNING</value>
    <description>
      The state of the default queue. State can be one of RUNNING or STOPPED.
    </description>
  </property>
  
  <property>
    <name>yarn.scheduler.capacity.root.a.acl_submit_applications</name>
    <value>user1</value>
  </property>
     
  <property>
    <name>yarn.scheduler.capacity.root.a.acl_administer_queue</name>
    <value>user1</value>
    <description>
      The ACL of who can administer jobs on the default queue.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.b.acl_submit_applications</name>
    <value>user2</value>
    <description>
      The ACL of who can submit jobs to the default queue.
    </description>
  </property>
  
  <property>
    <name>yarn.scheduler.capacity.root.b.acl_administer_queue</name>
    <value>user2</value>
    <description>
      The ACL of who can administer jobs on the default queue.
    </description>
  </property>

</configuration>

I was setup them in master and coppy in salve.
any help me?

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật