Add a sequential counter column on groups to a pandas dataframe

I feel like there is a better way than this:

import pandas as pd
df = pd.DataFrame(
    columns="   index    c1    c2    v1 ".split(),
    data= [
            [       0,  "A",  "X",    3, ],
            [       1,  "A",  "X",    5, ],
            [       2,  "A",  "Y",    7, ],
            [       3,  "A",  "Y",    1, ],
            [       4,  "B",  "X",    3, ],
            [       5,  "B",  "X",    1, ],
            [       6,  "B",  "X",    3, ],
            [       7,  "B",  "Y",    1, ],
            [       8,  "C",  "X",    7, ],
            [       9,  "C",  "Y",    4, ],
            [      10,  "C",  "Y",    1, ],
            [      11,  "C",  "Y",    6, ],]).set_index("index", drop=True)
def callback(x):
    x['seq'] = range(1, x.shape[0] + 1)
    return x
df = df.groupby(['c1', 'c2']).apply(callback)
print df

To achieve this:

   c1 c2  v1  seq
0   A  X   3    1
1   A  X   5    2
2   A  Y   7    1
3   A  Y   1    2
4   B  X   3    1
5   B  X   1    2
6   B  X   3    3
7   B  Y   1    1
8   C  X   7    1
9   C  Y   4    1
10  C  Y   1    2
11  C  Y   6    3

Is there a way to do it that avoids the callback?

0

use cumcount(), see docs here

In [4]: df.groupby(['c1', 'c2']).cumcount()
Out[4]: 
0     0
1     1
2     0
3     1
4     0
5     1
6     2
7     0
8     0
9     0
10    1
11    2
dtype: int64

If you want orderings starting at 1

In [5]: df.groupby(['c1', 'c2']).cumcount()+1
Out[5]: 
0     1
1     2
2     1
3     2
4     1
5     2
6     3
7     1
8     1
9     1
10    2
11    3
dtype: int64

0

This might be useful

df = df.sort_values(['userID', 'date'])
grp = df.groupby('userID')['ItemID'].aggregate(lambda x: '->'.join(tuple(x))).reset_index()
print(grp)

it will create a sequence like this

If you have a dataframe similar to the one below and you want to add seq column by building it from c1 or c2, i.e. keep a running count of similar values (or until a flag comes up) in other column(s), read on.

df = pd.DataFrame(
    columns="  c1      c2    seq".split(),
    data= [
            [ "A",      1,    1 ],
            [ "A1",     0,    2 ],
            [ "A11",    0,    3 ],
            [ "A111",   0,    4 ],
            [ "B",      1,    1 ],
            [ "B1",     0,    2 ],
            [ "B111",   0,    3 ],
            [ "C",      1,    1 ],
            [ "C11",    0,    2 ] ])

then first find group starters, (str.contains() (and eq()) is used below but any method that creates a boolean Series such as lt(), ne(), isna() etc. can be used) and call cumsum() on it to create a Series where each group has a unique identifying value. Then use it as the grouper on a groupby().cumsum() operation.

In summary, use a code similar to the one below.

# build a grouper Series for similar values
groups = df['c1'].str.contains("A$|B$|C$").cumsum()

# or build a grouper Series from flags (1s)
groups = df['c2'].eq(1).cumsum()

# groupby using the above grouper
df['seq'] = df.groupby(groups).cumcount().add(1)

0

You can use the groupby and cumcount functions to achieve your desired result.

import pandas as pd

data = {'col': ['A', 'B', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'A']}
df = pd.DataFrame(data)

df['counts'] = df.groupby('col').cumcount() + 1

df

The cleanliness of Jeff’s answer is nice, but I prefer to sort explicitly…though generally without overwriting my df for these type of use-cases (e.g. Shaina Raza’s answer).

So, to create a new column sequenced by ‘v1’ within each (‘c1’, ‘c2’) group:

df["seq"] = df.sort_values(by=['c1','c2','v1']).groupby(['c1','c2']).cumcount()

you can check with:

df.sort_values(by=['c1','c2','seq'])

or, if you want to overwrite the df, then:

df = df.sort_values(by=['c1','c2','seq']).reset_index()

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật