How does the data.table `on` logic work for unequal joins?

Please have a look at the following code. It constructs a data.table and does a kind of unequal self join (except that I copied the table before doing the join, so I know where what column comes from).

library(data.table)
dt <- data.table(ind=1:5, x=letters[1:5])
dtcopy <- copy(dt)
dtcopy[,indminus3 := ind - 3]
setnames(dtcopy, names(dtcopy), paste0(names(dtcopy), "copy"))
dtcopy[,indcopy2 := indcopy]
dt[dtcopy, on = c("ind<=indcopy", "ind>indminus3copy")]

The idea is, that for each index “i” I get all the entries that have the index between “i-3” (exclusive) and “i”.

This is what I get:

    ind x ind.1 xcopy indcopy2
 1:   1 a    -2     a        1
 2:   2 a    -1     b        2
 3:   2 b    -1     b        2
 4:   3 a     0     c        3
 5:   3 b     0     c        3
 6:   3 c     0     c        3
 7:   4 b     1     d        4
 8:   4 c     1     d        4
 9:   4 d     1     d        4
10:   5 c     2     e        5
11:   5 d     2     e        5
12:   5 e     2     e        5

I have several questions about that:

  • Where does ind.1 come from? What does it mean? Why is it there?
  • Why is there no indcopy column, where did it go? I assume if it were not dropped, there would be a column like indcopy2? Is that correct?
  • Why do the columns ind and x not match? In the original dt there is no row with ind==2 and x==”a”. It seems like the matches are between ind and xcopy, I find this confusing. Why is it the way it is?

These are my questions, now let me show you what I want to do with it, maybe you can comment on that as well:

There is no frollmedian, and using frollapply is very slow. In addition, I need an adaptive window, which is not really well implemented anyways. So here is some code that computes the rolling median using all entries that have an age not older than 10 seconds as the basis for aggregation:

library(data.table)
dt <- data.table(time = as.POSIXct("2020-06-01") + c(13, 20, 23, 26, 30, 38, 42, 50),
                 x = c(0, .1, 1, 10, 100, 1000, 10000, 100000))
dtcopy <- copy(dt)
dtcopy[,timeminus10 := time - 10]
setnames(dtcopy, names(dtcopy), paste0(names(dtcopy), "copy"))
dtcopy[,timecopy2 := timecopy]
dt[dtcopy, on = c("time<=timecopy", "time>=timeminus10copy")][,median(x),by=timecopy2]$V1

What do think of this approach? It is definitively a lot faster than frollapply (more than 100 times faster if I remember correctly for data with 10000 entries or so). What I personally do not understand is why dt[dtcopy, on = c("time<=timecopy", "time>=timeminus10copy")][,median(x),by=time] also gives a correct result and what I understand even less is that the seemingly same statement dt[dtcopy, on = c("time<=timecopy", "time>=timeminus10copy"),median(x),by=time] gives a wrong result.

The last puzzling thing I want to share with you is that dt[dtcopy, on = c("time<=timecopy", "time>=timeminus10copy")][,median(x),by=timecopy2] works but that dt[dtcopy, on = c("time<=timecopy", "time>=timeminus10copy"),median(x),by=timecopy2] gives an error.

For the first set of questions, the non-equi statement ind<=indcopy will result in a column named ind that takes the value of indcopy in the row that meets the conditions of the full non-equi statement. Likewise, the non-equi statement ind>indminus3copy would also result in a column named ind, except that there is already a column named ind that resulted from the first non-equi statement, so it is renamed ind.1. ind.1 takes the value of indminus3copy from the row that meets the conditions of the full non-equi statement.

To summarize, in the final output, the value in ind comes from indcopy, and the value in ind.1 comes from indminus3copy. The original ind column from dt is not carried to the final output.

It is easier to see what is happening by creating a copy of the columns used in the comparison (i.e., for A[B, on = .(...)] create a copy of the columns of A that appear in ...):

dt[,ind2 := ind]
dt[dtcopy, on = .(ind<=indcopy, ind>indminus3copy)]
#>       ind      x  ind2 ind.1  xcopy indcopy2
#>     <int> <char> <int> <int> <char>    <int>
#>  1:     1      a     1    -2      a        1
#>  2:     2      a     1    -1      b        2
#>  3:     2      b     2    -1      b        2
#>  4:     3      a     1     0      c        3
#>  5:     3      b     2     0      c        3
#>  6:     3      c     3     0      c        3
#>  7:     4      b     2     1      d        4
#>  8:     4      c     3     1      d        4
#>  9:     4      d     4     1      d        4
#> 10:     5      c     3     2      e        5
#> 11:     5      d     4     2      e        5
#> 12:     5      e     5     2      e        5

dt[,ind3 := ind]
dt[dtcopy, on = .(ind<=indcopy, ind2>indminus3copy)]
#>       ind      x  ind2  ind3  xcopy indcopy2
#>     <int> <char> <int> <int> <char>    <int>
#>  1:     1      a    -2     1      a        1
#>  2:     2      a    -1     1      b        2
#>  3:     2      b    -1     2      b        2
#>  4:     3      a     0     1      c        3
#>  5:     3      b     0     2      c        3
#>  6:     3      c     0     3      c        3
#>  7:     4      b     1     2      d        4
#>  8:     4      c     1     3      d        4
#>  9:     4      d     1     4      d        4
#> 10:     5      c     2     3      e        5
#> 11:     5      d     2     4      e        5
#> 12:     5      e     2     5      e        5

Rolling Median

The median calculation using a non-equi join can be simplified a bit:

dt <- data.table(time = as.POSIXct("2020-06-01") + c(13, 20, 23, 26, 30, 38, 42, 50),
                 x = c(0, .1, 1, 10, 100, 1000, 10000, 100000))

dt[,time10 := time - 10]
dt[dt, on = .(time <= time, time >= time10)][,.(xmed10 = median(x)), time]
#>                   time  xmed10
#>                 <POSc>   <num>
#> 1: 2020-06-01 00:00:13 0.0e+00
#> 2: 2020-06-01 00:00:20 5.0e-02
#> 3: 2020-06-01 00:00:23 1.0e-01
#> 4: 2020-06-01 00:00:26 1.0e+00
#> 5: 2020-06-01 00:00:30 5.5e+00
#> 6: 2020-06-01 00:00:38 5.5e+02
#> 7: 2020-06-01 00:00:42 5.5e+03
#> 8: 2020-06-01 00:00:50 5.5e+04

This is a good approach. However, for large datasets the join may create a very large intermediate table and may run into memory problems. One way around that is with .EACHI:

dt[dt, on = .(time >= time10, time <= time), .(xmed10 = median(x)),
   .EACHI][,time := NULL][]
#>                   time  xmed10
#>                 <POSc>   <num>
#> 1: 2020-06-01 00:00:13 0.0e+00
#> 2: 2020-06-01 00:00:20 5.0e-02
#> 3: 2020-06-01 00:00:23 1.0e-01
#> 4: 2020-06-01 00:00:26 1.0e+00
#> 5: 2020-06-01 00:00:30 5.5e+00
#> 6: 2020-06-01 00:00:38 5.5e+02
#> 7: 2020-06-01 00:00:42 5.5e+03
#> 8: 2020-06-01 00:00:50 5.5e+04

Demonstrating the advantage of .EACHI with a larger dataset (note the difference in memory usage):

N <- 1e5
lookback <- 1e4
dt <- data.table(time = as.POSIXct("2020-06-01") + sample(2*N, N), x = runif(N))
dt[,time0 := time - lookback]

bench::mark(
  by = dt[dt, on = .(time <= time, time >= time0)][,.(xmed = median(x)), time],
  .EACHI = dt[dt, on = .(time >= time0, time <= time), .(xmed = median(x)),
              .EACHI][,time := NULL]
)
#> # A tibble: 2 × 6
#>   expression      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 by            37.8s    37.8s    0.0264   38.23GB    0.132
#> 2 .EACHI        17.9s    17.9s    0.0559    7.28GB    0.615

Note that .EACHI will only be faster if the intermediate table would be approaching available memory.


Final Notes

The reason dt[dtcopy, on = c("time<=timecopy", "time>=timeminus10copy"),median(x),by=time] isn’t working the way you want is because the grouping operation is done on dt before the join.

To make it more obvious, consider

dt[dtcopy, on = .(time <= timecopy, time >= timeminus10copy), .(x), by = time]
#>                    time     x
#>                  <POSc> <num>
#>  1: 2020-06-01 00:00:13 0e+00
#>  2: 2020-06-01 00:00:13 0e+00
#>  3: 2020-06-01 00:00:13 0e+00
#>  4: 2020-06-01 00:00:20 1e-01
#>  5: 2020-06-01 00:00:20 1e-01
#>  6: 2020-06-01 00:00:20 1e-01
#>  7: 2020-06-01 00:00:20 1e-01
#>  8: 2020-06-01 00:00:23 1e+00
#>  9: 2020-06-01 00:00:23 1e+00
#> 10: 2020-06-01 00:00:23 1e+00
#> 11: 2020-06-01 00:00:26 1e+01
#> 12: 2020-06-01 00:00:26 1e+01
#> 13: 2020-06-01 00:00:30 1e+02
#> 14: 2020-06-01 00:00:30 1e+02
#> 15: 2020-06-01 00:00:38 1e+03
#> 16: 2020-06-01 00:00:38 1e+03
#> 17: 2020-06-01 00:00:42 1e+04
#> 18: 2020-06-01 00:00:42 1e+04
#> 19: 2020-06-01 00:00:50 1e+05

This is essentially the same as doing

dt[,time2 := time]
dt[1][dtcopy, on = .(time <= timecopy, time >= timeminus10copy), .(time = time2, x), nomatch = 0]
#>                   time     x
#>                 <POSc> <num>
#> 1: 2020-06-01 00:00:13     0
#> 2: 2020-06-01 00:00:13     0
#> 3: 2020-06-01 00:00:13     0
dt[2][dtcopy, on = .(time <= timecopy, time >= timeminus10copy), .(time = time2, x), nomatch = 0]
#>                   time     x
#>                 <POSc> <num>
#> 1: 2020-06-01 00:00:20   0.1
#> 2: 2020-06-01 00:00:20   0.1
#> 3: 2020-06-01 00:00:20   0.1
#> 4: 2020-06-01 00:00:20   0.1
...

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật