Dropped threads when trying to run multiple Aspen Plus instances via Python script

I had to come up with a fairly complex FT-based process in Aspen Plus. The task is to calculate plant efficiency for varying boundary conditions. Because the calculations take a very long time, I am trying to use random forrest regression to estimate plant efficiency. The approach is to use a python script to access Aspen Plus via the COM interface to generate a large data set. In order to limit machine time, I would like to have multiple instances of Aspen Plus running at the same time. To do so I am using the multiprocessing toolbox to generate a pool of asynchronous workers. While the script works flawlessly for a single instance and when multi-threaded calculations are limited to several hundred cases, it starts to drop threads for larger data sets. The number of cases returned is random, but always a multiple of the number of Jobs designated to a thread.

import os
import numpy as np
import matplotlib.pyplot as plt
import win32com.client as win32
import multiprocessing as mp
import time
import random
import pandas as pd # for working with DataFrames
from sklearn.model_selection import train_test_split # for splitting the data
from sklearn.metrics import mean_squared_error # for calculating the cost function
from sklearn.ensemble import RandomForestRegressor # for building the model
import pylab

start_time = time.time()
simulation_result = []

###############################################################################
#Calculation options
###############################################################################

JobsPerProcessor = 500
NumberOfProcessors = 10

###############################################################################
# Boundary condtions
###############################################################################

T_min = 600
T_max = 1000

p_min = 1
p_max =20

boundaries = [JobsPerProcessor, T_min, T_max, p_min, p_max]

###############################################################################
# Function to access Aspen Simulation
###############################################################################

def RunAspenSimulation(boundaries):
    
    process = mp.current_process()
    pid = process.name
    
    results = []
     
    # Create Aspen Plus Object
    aspen = win32.Dispatch('Apwn.Document')
    
    # Open the file
    aspen.InitFromArchive2(os.path.abspath('Reformerbsp/240717_Reformer_v1.bkp'))
    
    for point in range(boundaries[0]):
        
        # Random boundary conditions
        temperature = random.uniform(boundaries[1], boundaries[2])
        pressure = random.uniform(boundaries[3], boundaries[4]) 
        
        # Set Variables
        aspen.Tree.FindNode('/Data/Blocks/REFORMER/Input/TEMP').Value = temperature
        aspen.Tree.FindNode('/Data/Blocks/REFORMER/Input/PRES').Value = pressure
        
        # Run simulation
        aspen.Engine.Run2()
        
        # Get results
        x_CH4 =  aspen.Tree.FindNode('/Data/Streams/SYNGAS/Output/MOLEFRAC/MIXED/CH4').Value
        x_CO = aspen.Tree.FindNode('/Data/Streams/SYNGAS/Output/MOLEFRAC/MIXED/CO').Value
        x_CO2 = aspen.Tree.FindNode('/Data/Streams/SYNGAS/Output/MOLEFRAC/MIXED/CO2').Value
        x_H2 = aspen.Tree.FindNode('/Data/Streams/SYNGAS/Output/MOLEFRAC/MIXED/H2').Value
        x_H2O = aspen.Tree.FindNode('/Data/Streams/SYNGAS/Output/MOLEFRAC/MIXED/H2O').Value
        
        results.append([temperature, pressure, x_CH4, x_CO, x_CO2, x_H2, x_H2O])
        
        print("Worker", pid, "finished Job ", point)
               
    aspen.Close()
    
    print("Worker", pid, "calculations finished")
    
    return results

###############################################################################
# Single threaded calculations
###############################################################################

def SingleprocessAspen(boundaries):

    simulation_result = RunAspenSimulation(boundaries)
    
    print("elapsed time %s" % (time.time() - start_time))
    
    return simulation_result

###############################################################################
# Fetching results
###############################################################################

def collect_results(result):
    simulation_result.extend(result)

###############################################################################
# Multiprocessing
###############################################################################

def MultiprocessAspen(boundaries, NumberOfProcessors):
    # Create a pool of processors. Each processor will have one instance of Aspen Plus to work with
    pool = mp.Pool(NumberOfProcessors)
    
    for i in range(NumberOfProcessors):
        pool.apply_async(RunAspenSimulation,(boundaries,),callback=collect_results) 
        
    # Close parallel worker pool
    pool.close()

    # Wait for asynchronous calculations to finish
    pool.join()
    
    print("elapsed time %s" % (time.time() - start_time))
    
    return simulation_result

###############################################################################
# Run Regression
###############################################################################

if __name__ == '__main__':
    simulation_result = SingleprocessAspen(boundaries)
   # simulation_result = MultiprocessAspen(boundaries, NumberOfProcessors)  

    ###########################################################################
    # Formatting of Data
    ###########################################################################

    Sim_out = np.array(simulation_result)
    
    print("datapoints:", len(simulation_result))
    
    dataset = pd.DataFrame({'temperature': Sim_out[:, 0], 'pressure': Sim_out[:, 1], 'x_CH4': Sim_out[:, 2], 'x_CO': Sim_out[:, 3], 'x_CO2': Sim_out[:, 4], 'x_H2': Sim_out[:, 5], 'x_H2O': Sim_out[:, 6]})
    
    ###############################################################################
    # Random Forest Regression
    ###############################################################################

    # Splitting input data into input (x) and output (y) data

    x = dataset[['temperature', 'pressure']] #Input

    y = dataset[['x_CH4','x_CO','x_CO2', 'x_H2', 'x_H2O']]  # Output

    # Splitting the dataset into training and testing set (80/20)

    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 28)

    # Initializing the Random Forest Regression model with 10 decision trees

    model = RandomForestRegressor(n_estimators = 100, random_state = 0)

    # Fitting the Random Forest Regression model to the data

    model.fit(x_train, y_train)

    # Predicting the target values of the test set

    y_pred = model.predict(x_test)

    # Calculating Root Mean Square Error and mean error for evaluation

    rmse = float(format(np.sqrt(mean_squared_error(y_test, y_pred)),'.3f'))
    mean_error = rmse ** 0.5

    print("mean error:", mean_error)

    # Test prediction
    pred_array = pd.DataFrame({'temperature': [800], 'pressure': [8]})

    y_data = model.predict(pred_array)

    print('results:', y_data)

    plt.scatter(Sim_out[:,0], Sim_out[:,1])
    plt.show()
          
    print("elapsed time %s" % (time.time() - start_time))

I am expecting to recieve a set of Jobs per processer * workers datapoints. For the single threaded calculations and for less than 100 datapoints this works. Beyond that it seems like workers are dropped or results are not fetched correctly.

I have tried a minimal case without the connection to Aspen Plus and that does generate the data set without issues.

New contributor

Gregor Herz is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật