Python script to lemmatize many words using the `stanza` library just hangs?

My script called lemmatize.py looks like this:

import json
import stanza

def lemmatize_text(language: str, text: str):
    """
    Lemmatizes the input text for a specified language and returns a map of original words to lemmatized words.

    :param language: The language code (e.g., 'en' for English).
    :param text: The input text to be lemmatized.
    :return: A dictionary mapping original words to lemmatized words.
    """
    # Initialize the pipeline for the specified language
    nlp = stanza.Pipeline(lang=language, processors='tokenize,pos,lemma', use_gpu=False)

    # Process the text
    doc = nlp(text)

    # Create a dictionary to map original words to their lemmatized forms
    word_to_lemma = {}

    for sentence in doc.sentences:
        for word in sentence.words:
            word_to_lemma[word.text] = word.lemma

    return word_to_lemma

def lemmatize_words_from_json(language: str):
    """
    Lemmatizes each word from the JSON file created by the `write_top_words_with_frequencies_to_json` function.

    :param input_file: The input JSON file containing words and their frequencies.
    :param language: The language code (e.g., 'en' for English).
    """
    input_file = f'import/language/frequency/data/{language}.json'
    output_file = f'import/language/frequency/lemmatized/{language}.json'

    try:
      # Read the JSON file
      with open(input_file, mode='r', encoding='utf-8') as file:
        words_data = json.load(file)

      # Extract words from the JSON data
      words = [entry['word'] for entry in words_data]

      # Join the words into a single text for processing
      text = ' '.join(words)

      # Lemmatize the words
      print(f'Lemmatizing words for {language}...')
      word_to_lemma = lemmatize_text(language, text)

      # Write the mapping of original words to lemmatized words to a new JSON file
      with open(output_file, mode='w', encoding='utf-8') as file:
        json.dump(word_to_lemma, file, ensure_ascii=False, indent=2)

      print(f'Lemmatized words written to {output_file}')
    except Exception as e:
      print(f'Error writing {output_file}, {e}')

lemmatize_words_from_json('ar')
lemmatize_words_from_json('bn')
lemmatize_words_from_json('bg')
lemmatize_words_from_json('ca')
lemmatize_words_from_json('zh')
lemmatize_words_from_json('cs')
lemmatize_words_from_json('da')
lemmatize_words_from_json('nl')
lemmatize_words_from_json('en')
lemmatize_words_from_json('fi')
lemmatize_words_from_json('fr')
lemmatize_words_from_json('de')
lemmatize_words_from_json('el')
lemmatize_words_from_json('he')
lemmatize_words_from_json('hi')
lemmatize_words_from_json('hu')
lemmatize_words_from_json('is')
lemmatize_words_from_json('id')
lemmatize_words_from_json('it')
lemmatize_words_from_json('ja')
lemmatize_words_from_json('ko')
lemmatize_words_from_json('lv')
lemmatize_words_from_json('lt')
lemmatize_words_from_json('mk')
lemmatize_words_from_json('ms')
lemmatize_words_from_json('nb')
lemmatize_words_from_json('fa')
lemmatize_words_from_json('pl')
lemmatize_words_from_json('pt')
lemmatize_words_from_json('ro')
lemmatize_words_from_json('ru')
lemmatize_words_from_json('sk')
lemmatize_words_from_json('sl')
lemmatize_words_from_json('sh')
lemmatize_words_from_json('es')
lemmatize_words_from_json('sv')
lemmatize_words_from_json('fil')
lemmatize_words_from_json('ta')
lemmatize_words_from_json('tr')
lemmatize_words_from_json('uk')
lemmatize_words_from_json('ur')
lemmatize_words_from_json('vi')

It just hangs before even logging that Lemmatizing words for {language}. Here are the logs:

$ python3 import/language/frequency/lemmatize.py
Lemmatizing words for ar...
2024-08-03 20:43:14 INFO: Checking for updates to resources.json in case models have been updated.  Note: this behavior can be turned off with download_method=None or download_method=DownloadMethod.REUSE_RESOURCES
Downloading https://raw.githubusercontent.com/stanfordnlp/stanza-resources/main/resources_1.8.0.json: 386kB [00:00, 27.9MB/s]
2024-08-03 20:43:14 INFO: Downloaded file to /Users/me/stanza_resources/resources.json
2024-08-03 20:43:14 WARNING: Language ar package default expects mwt, which has been added
2024-08-03 20:43:14 INFO: Loading these models for language: ar (Arabic):
=============================
| Processor | Package       |
-----------------------------
| tokenize  | padt          |
| mwt       | padt          |
| pos       | padt_charlm   |
| lemma     | padt_nocharlm |
=============================

2024-08-03 20:43:14 INFO: Using device: cpu
2024-08-03 20:43:14 INFO: Loading: tokenize
/opt/miniconda3/lib/python3.12/site-packages/stanza/models/tokenization/trainer.py:82: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(filename, lambda storage, loc: storage)
2024-08-03 20:43:15 INFO: Loading: mwt
/opt/miniconda3/lib/python3.12/site-packages/stanza/models/mwt/trainer.py:170: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(filename, lambda storage, loc: storage)
2024-08-03 20:43:15 INFO: Loading: pos
/opt/miniconda3/lib/python3.12/site-packages/stanza/models/pos/trainer.py:139: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(filename, lambda storage, loc: storage)
/opt/miniconda3/lib/python3.12/site-packages/stanza/models/common/pretrain.py:56: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  data = torch.load(self.filename, lambda storage, loc: storage)
/opt/miniconda3/lib/python3.12/site-packages/stanza/models/common/char_model.py:271: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  state = torch.load(filename, lambda storage, loc: storage)
2024-08-03 20:43:15 INFO: Loading: lemma
/opt/miniconda3/lib/python3.12/site-packages/stanza/models/lemma/trainer.py:236: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(filename, lambda storage, loc: storage)
2024-08-03 20:43:15 INFO: Done loading processors!
[HANGING]...

What is happening? How do I get this to work? It just hangs there… It doesn’t actually say [HANGING]..., but that’s where it stops and just hangs.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật