Find the portfolio with the maximum return at a given risk level using the `fPortfolio` package in `R`

I’m trying to find the portfolio with the maximum return at a given risk level using the fPortfolio package in R. However, there appears to be a bug in the package that the optimal portfolio (based on max returns) does not change when changing the target risk level, suggesting that it is not taking into account the target risk level specified by the user. This issue has been identified by others (see links below), and I provide a minimal reproducible example below. As far as I can tell, this issue has not been addressed in the package documentation (archived here) or in the authors’ book on fPortfolio (archived here). The bug was described nearly 10 years ago and it still hasn’t been fixed, so I figured we could turn to the community to help address it. My goal in creating this issue is to summarize what is known, identify potential issues with the package code, and hopefully get help to address it.

Here are the StackOverflow issues on this issue:

  • Setting target risk in R package fPortfolio (archived here)
  • Using target risk or target return in R package fPortfolio (archived here)

Here is a minimal reproducible example:

library("quantmod")
#> Warning: package 'quantmod' was built under R version 4.3.3
#> Loading required package: xts
#> Loading required package: zoo
#> 
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#> 
#>     as.Date, as.Date.numeric
#> Loading required package: TTR
#> Warning: package 'TTR' was built under R version 4.3.3
#> Registered S3 method overwritten by 'quantmod':
#>   method            from
#>   as.zoo.data.frame zoo
library("fPortfolio")
#> Warning: package 'fPortfolio' was built under R version 4.3.3
#> Loading required package: timeDate
#> Warning: package 'timeDate' was built under R version 4.3.2
#> Loading required package: timeSeries
#> Warning: package 'timeSeries' was built under R version 4.3.3
#> 
#> Attaching package: 'timeSeries'
#> The following object is masked from 'package:zoo':
#> 
#>     time<-
#> The following objects are masked from 'package:graphics':
#> 
#>     lines, points
#> Loading required package: fBasics
#> Warning: package 'fBasics' was built under R version 4.3.3
#> 
#> Attaching package: 'fBasics'
#> The following object is masked from 'package:TTR':
#> 
#>     volatility
#> Loading required package: fAssets
#> Warning: package 'fAssets' was built under R version 4.3.3
library("dplyr")
#> Warning: package 'dplyr' was built under R version 4.3.2
#> 
#> ######################### Warning from 'xts' package ##########################
#> #                                                                             #
#> # The dplyr lag() function breaks how base R's lag() function is supposed to  #
#> # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
#> # source() into this session won't work correctly.                            #
#> #                                                                             #
#> # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
#> # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
#> # dplyr from breaking base R's lag() function.                                #
#> #                                                                             #
#> # Code in packages is not affected. It's protected by R's namespace mechanism #
#> # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
#> #                                                                             #
#> ###############################################################################
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:timeSeries':
#> 
#>     filter, lag
#> The following objects are masked from 'package:xts':
#> 
#>     first, last
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union

# Download historical stock prices
symbols <- c("AAPL", "MSFT", "GOOGL", "AMZN", "JNJ", "JPM", "V", "PG", "XOM", "TSLA")
quantmod::getSymbols(symbols)
#>  [1] "AAPL"  "MSFT"  "GOOGL" "AMZN"  "JNJ"   "JPM"   "V"     "PG"    "XOM"  
#> [10] "TSLA"

# Calculate stock returns
prices <- do.call(merge, lapply(symbols, function(sym) quantmod::Cl(get(sym))))
returns <- na.omit(TTR::ROC(prices, type = "discrete"))

returns_ts <- timeSeries::as.timeSeries(returns)

# Create portfolio
portfolioSpec <- fPortfolio::portfolioSpec()

# Identify tangency portfolio
tangencyPortfolio <- fPortfolio::tangencyPortfolio(
  data = returns_ts,
  spec = portfolioSpec)

# Extract optimal weights for tangency portfolio
fPortfolio::getWeights(tangencyPortfolio)
#>  AAPL.Close  MSFT.Close GOOGL.Close  AMZN.Close   JNJ.Close   JPM.Close 
#>  0.21136483  0.12495822  0.01223435  0.18743248  0.00000000  0.00000000 
#>     V.Close    PG.Close   XOM.Close  TSLA.Close 
#>  0.23495738  0.06078310  0.00000000  0.16826965

# Define target risk levels
targetRisks <- seq(0, 0.3, by = 0.01)

# Initialize storage for optimal portfolios
optimalPortfolios <- list()
optimalWeights_list <- list()

# Find optimal weightings for each target risk level
for (risk in targetRisks) {
  # Create a portfolio optimization specification with the target risk
  portfolioSpec <- fPortfolio::portfolioSpec()
  fPortfolio::setTargetRisk(portfolioSpec) <- risk
  
  # Solve for the maximum return at this target risk
  optimal_portfolio <- fPortfolio::maxreturnPortfolio(
    returns_ts,
    spec = portfolioSpec)
  
  # Store the optimal portfolio
  optimalPortfolios[[as.character(risk)]] <- optimal_portfolio
  
  # Store the optimal portfolio weights with risk level
  optimal_weights <- fPortfolio::getWeights(optimal_portfolio)
  optimalWeights_list[[as.character(risk)]] <- c(RiskLevel = risk, optimal_weights)
}

optimalWeightsByRisk <- dplyr::bind_rows(optimalWeights_list)
optimalWeightsByRisk
#> # A tibble: 31 × 11
#>    RiskLevel AAPL.Close MSFT.Close GOOGL.Close AMZN.Close JNJ.Close JPM.Close
#>        <dbl>      <dbl>      <dbl>       <dbl>      <dbl>     <dbl>     <dbl>
#>  1      0        0.0276          0      0.0282     0.0466     0.393         0
#>  2      0.01     0.0276          0      0.0282     0.0466     0.393         0
#>  3      0.02     0.0276          0      0.0282     0.0466     0.393         0
#>  4      0.03     0.0276          0      0.0282     0.0466     0.393         0
#>  5      0.04     0.0276          0      0.0282     0.0466     0.393         0
#>  6      0.05     0.0276          0      0.0282     0.0466     0.393         0
#>  7      0.06     0.0276          0      0.0282     0.0466     0.393         0
#>  8      0.07     0.0276          0      0.0282     0.0466     0.393         0
#>  9      0.08     0.0276          0      0.0282     0.0466     0.393         0
#> 10      0.09     0.0276          0      0.0282     0.0466     0.393         0
#> # ℹ 21 more rows
#> # ℹ 4 more variables: V.Close <dbl>, PG.Close <dbl>, XOM.Close <dbl>,
#> #   TSLA.Close <dbl>

sessionInfo()
#> R version 4.3.1 (2023-06-16 ucrt)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 11 x64 (build 22631)
#> 
#> Matrix products: default
#> 
#> 
#> locale:
#> [1] LC_COLLATE=English_United States.utf8 
#> [2] LC_CTYPE=English_United States.utf8   
#> [3] LC_MONETARY=English_United States.utf8
#> [4] LC_NUMERIC=C                          
#> [5] LC_TIME=English_United States.utf8    
#> 
#> time zone: America/Chicago
#> tzcode source: internal
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#>  [1] dplyr_1.1.4         fPortfolio_4023.84  fAssets_4023.85    
#>  [4] fBasics_4032.96     timeSeries_4032.109 timeDate_4032.109  
#>  [7] quantmod_0.4.26     TTR_0.24.4          xts_0.14.0         
#> [10] zoo_1.8-12         
#> 
#> loaded via a namespace (and not attached):
#>  [1] utf8_1.2.4          generics_0.1.3      bitops_1.0-7       
#>  [4] robustbase_0.99-3   slam_0.1-51         lattice_0.22-6     
#>  [7] digest_0.6.36       magrittr_2.0.3      rneos_0.4-0        
#> [10] evaluate_0.24.0     grid_4.3.1          fCopulae_4022.85   
#> [13] mvtnorm_1.2-5       fastmap_1.2.0       jsonlite_1.8.8     
#> [16] energy_1.7-11       fansi_1.0.6         kernlab_0.9-32     
#> [19] truncnorm_1.0-9     XML_3.99-0.17       numDeriv_2016.8-1.1
#> [22] ecodist_2.1.3       mnormt_2.1.1        cli_3.6.3          
#> [25] rlang_1.1.4         Rglpk_0.6-5.1       gsl_2.1-8          
#> [28] reprex_2.1.1        withr_3.0.0         yaml_2.3.9         
#> [31] tools_4.3.1         parallel_4.3.1      mvnormtest_0.1-9-3 
#> [34] boot_1.3-30         curl_5.2.1          R6_2.5.1           
#> [37] vctrs_0.6.5         stats4_4.3.1        lifecycle_1.0.4    
#> [40] fs_1.6.4            MASS_7.3-60.0.1     Rsolnp_1.16        
#> [43] pkgconfig_2.0.3     pillar_1.9.0        fMultivar_4031.84  
#> [46] glue_1.7.0          Rcpp_1.0.13         tidyselect_1.2.1   
#> [49] tibble_3.2.1        DEoptimR_1.1-3      xfun_0.46          
#> [52] rstudioapi_0.16.0   knitr_1.48          spatial_7.3-17     
#> [55] htmltools_0.5.8.1   igraph_2.0.3        rmarkdown_2.27     
#> [58] compiler_4.3.1      quadprog_1.5-8      sn_2.1.1           
#> [61] RCurl_1.98-1.16

Created on 2024-07-23 with reprex v2.1.1

Here is the package code for the maxreturnPortfolio() function:

> fPortfolio::maxreturnPortfolio
function (data, spec = portfolioSpec(), constraints = "LongOnly") 
{
    data = portfolioData(data, spec)
    if (is.null(getTargetRisk(spec))) {
        stop("Missing target risk for maximum return optimization.")
    }
    else {
        Solver = match.fun(getSolver(spec))
        portfolio = Solver(data, spec, constraints)
        setWeights(spec) = portfolio$weights
        setStatus(spec) = portfolio$status
        Title = "Return Maximized Efficient Portfolio"
    }
    portfolio <- feasiblePortfolio(data, spec, constraints)
    portfolio@call <- match.call()
    portfolio@title <- Title
    portfolio
}

It appears to call the feasiblePortfolio() function:

> fPortfolio::feasiblePortfolio
function (data, spec = portfolioSpec(), constraints = "LongOnly") 
{
    Data <- portfolioData(data, spec)
    if (inherits(data, "fPFOLIODATA")) 
        data <- getSeries(Data)
    assetsNames <- getUnits(Data)
    Spec <- spec
    Constraints <- portfolioConstraints(Data, spec, constraints)
    if (is.null(getWeights(spec))) {
        stop("Missing weights")
    }
    weights <- as.vector(getWeights(spec))
    names(weights) <- assetsNames
    if (inherits(getSeries(Data), "timeSeries")) {
        targetReturn <- c(mean = (Data@statistics$mean %*% weights)[[1]], 
            mu = (Data@statistics$mu %*% weights)[[1]])
        setTargetReturn(spec) <- targetReturn
        Cov <- Data@statistics$Cov
        cov <- sqrt((weights %*% Cov %*% weights)[[1]])
        if (getType(spec) == "SPS") {
            myCheck <- TRUE
            funSigma <- match.fun(getObjective(spec)[1])
            rcov <- funSigma(as.vector(weights))
        }
        else {
            Sigma <- Data@statistics$Sigma
            rcov <- sqrt((weights %*% Sigma %*% weights)[[1]])
        }
        alpha <- getAlpha(spec)
        returns <- getDataPart(getSeries(Data)) %*% weights
        VaR <- quantile(returns, alpha, type = 1)
        CVaR <- VaR - 0.5 * mean(((VaR - returns) + abs(VaR - 
            returns)))/alpha
        targetRisk <- c(cov, rcov, -CVaR, -VaR)
        names(targetRisk) <- c("Cov", "Sigma", "CVaR", "VaR")
        alpha <- getAlpha(Spec)
    }
    else if (inherits(getSeries(Data), "logical")) {
        targetReturn <- c(mean = (Data@statistics$mean %*% weights)[[1]], 
            mu = NA)
        setTargetReturn(spec) <- targetReturn
        Cov <- Data@statistics$Cov
        cov <- sqrt((weights %*% Cov %*% weights)[[1]])
        targetRisk <- c(cov, NA, NA, NA)
        names(targetRisk) <- c("Cov", "Sigma", "CVaR", "VaR")
        alpha <- NA
    }
    covRiskBudgets <- (weights * Cov %*% weights)[, 1]/cov^2
    names(covRiskBudgets) <- assetsNames
    Portfolio <- new("fPFOLIOVAL", portfolio = list(weights = weights, 
        covRiskBudgets = covRiskBudgets, targetReturn = targetReturn, 
        targetRisk = targetRisk, targetAlpha = alpha, status = getStatus(spec)))
    new("fPORTFOLIO", call = match.call(), data = Data, spec = Spec, 
        constraints = Constraints, portfolio = Portfolio, title = "Feasible Portfolio", 
        description = description())
}

As far as I can tell based on the code (and I’m no expert), the feasiblePortfolio() function seems to create and assign the target risk, not to accept it as an input from the user (i.e., targetRisk <- c(cov, rcov, -CVaR, -VaR)), although I’m not sure. As one SO user noted, “[It] seems to have something to do with the efficientPortfolio() function and the solver used in spec. Apparently no matter what targetRisk you input, the solver inputs an objective that corresponds to the Covyou get when you print the portfolio”.

Any help in helping to identify and fix this issue would be greatly appreciated.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật