Universal Kriging Accuracy with Strain Field

I am attempting to interpolate the normal strain results in the wall type structure (dimensions:800×500 mm) while having approximately 150 scattered known points in the whole element

Sensor Layout

I used universal kriging with the Pykrige toolkit, but the lowest error margin I achieved, when compared to FEM results, was 37%, which seems very high. This was with a Gaussian variogram. I also tried creating a custom variogram model, but the results seemed incorrect with an effective range of 839.42, sill and nugget effect both 0, and an even higher error margin.

Custom variogram model

Am I creating the variogram model incorrectly? Is Kriging suitable for this case, or should I use simpler interpolation methods? Should I add anything else to the interpolation like trend model, use zonal Kriging (as I have three distinct zones for high, medium and low strains), or implement drift_term? How can I know if the data that I am using is intended for certain variograms? This question rises from the fact that what I have seen the values in lag bin mostly stay the same after increasing for some time, and in my case it stagnates.

Here is my Python code:

import numpy as np
import pandas as pd
from pykrige.uk import UniversalKriging
import matplotlib.pyplot as plt
import skgstat as skg

# Load the known strain data and x, y locations from the Excel file using pandas
excel_file = 'Sensor-Results(Exx).xlsx'
data = pd.read_excel(excel_file)

# Extract x, y, and strain values from the DataFrame by using their names on top of the columns
x_known = data['X'].values
y_known = data['Y'].values
strain_known = data['Exx'].values

# Define the grid dimensions
grid_width = 800  # in mm
grid_height = 500  # in mm

# Define the grid division
width1 = 37.5  # in mm
width2 = 50  # in mm
width3 = 282.5  # in mm
width4 = 60  # in mm

# Generate points using the provided divisions (For creating the identical mesh to FEM model)
x1 = np.linspace(0, width1, 1)  # Grid on 0 location
x2 = np.linspace(width1, width1 + width2, 1)  # Grid on 37.5 location
x3 = np.linspace(width1 + width2, 370, 8)  # Grid on 127.857 to 370
x4 = np.linspace(400, width1 + width2 + width3 + width4, 2)
x5 = np.linspace(width1 + width2 + width3 + width4 + width3 / 7, width1 + width2 + width3 * 2 + width4, 7)
x6 = np.linspace(width1 + width2 * 2 + width3 * 2 + width4, grid_width, 2)

# Combine all x points
x_grid = np.unique(np.concatenate((x1, x2, x3, x4, x5, x6)))
y_grid = np.linspace(0, grid_height, 14)

# Create a meshgrid of the grid points
X, Y = np.meshgrid(x_grid, y_grid)

# Flatten the meshgrid arrays
x_flat = X.flatten()
y_flat = Y.flatten()

# Create empirical variogram
coords = np.vstack((x_known, y_known)).T
strain_known = strain_known.flatten()
V = skg.Variogram(coords, strain_known, n_lags=15, normalize=True, model='gaussian', estimator='dowd')
fig = V.plot(show=False)
plt.show()
print(V)

# Extract variogram parameters
variogram_model_parameters = V.parameters
variogram_model = 'gaussian'
print("Variogram Model Parameters:", variogram_model_parameters)

# Perform Universal Kriging interpolation for the full grid with linear drift
uk = UniversalKriging(
    x_known, y_known, strain_known,
    variogram_model=variogram_model,
    variogram_parameters=variogram_model_parameters,
    drift_terms=['regional_linear']
)
strain_interpolated, _ = uk.execute('grid', x_grid, y_grid)

# Replace the interpolated values at known data points with the actual known values
for x, y, strain in zip(x_known, y_known, strain_known):
    xi = np.abs(x_grid - x).argmin()
    yi = np.abs(y_grid - y).argmin()
    strain_interpolated[yi, xi] = strain

# Create a DataFrame with all grid points and interpolated strain values
interpolated_df = pd.DataFrame({
    'X': x_flat,
    'Y': y_flat,
    'Strain': strain_interpolated.flatten()
})

# Sort the DataFrame to achieve the desired zigzag order
interpolated_sorted = pd.DataFrame(columns=['X', 'Y', 'Strain'])

for x_val in x_grid:
    temp_df = interpolated_df[interpolated_df['X'] == x_val]
    idx = np.where(x_grid == x_val)[0][0]
    if idx % 2 == 0:  # Even index
        interpolated_sorted = pd.concat([interpolated_sorted, temp_df])
    else:  # Odd index
        interpolated_sorted = pd.concat([interpolated_sorted, temp_df.iloc[::-1]])

# Save the interpolated data
interpolated_sorted.to_csv('24_06_21_Kriging-Variogram(Exx).txt', sep='t', index=False, header=True)

# Plot the heat map
strain_grid = strain_interpolated.reshape(X.shape)
plt.figure(figsize=(10, 6))
plt.contourf(X, Y, strain_grid, cmap='rainbow')
plt.colorbar()

# Scatter plot with connecting lines
plt.scatter(x_known, y_known, color='black', s=10)
plt.plot(x_known, y_known, color='red', linewidth=1, linestyle='-')

plt.xlabel('X (mm)')
plt.ylabel('Y (mm)')
plt.title('Strain Heatmap Exx')
plt.show()

The data that I am analyzing is randomly taken from the FEM model that I have created.

Contour Plot

The contour plot shows the distinct zones of high low and medium strain results, gradually changing in y direction.
From the default UK, the toolkit somehow gives me different parameters from variogram analysis.

Sill: 4.94245937e-06

Range: 1.85944481e+02

Nugget: 1.04982139e-06

These results are quite different when I create a custom variogram for example for Gaussian Variogram the effective range, sill, nugget are printed as follows:

[839.4157043511434, 1.234774627684911e-05, 0]

What could be the reason of such difference in custom and default variogram results?

New contributor

Shalva Esakia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật