Question:
I’m encountering an issue with duplicated index levels in a Pandas MultiIndex DataFrame when calculating factor returns using Alphalens. My factor_data
contains both factor
and factor_quantile
columns, each with asset
and date
indices. When I attempt to calculate the factor returns, I get a ValueError
indicating that the ‘date’ occurs multiple times.
Here’s a sample of my data:
Initial index names for factor Momentum_1YR: ['date', 'asset']
Initial index levels for factor Momentum_1YR: [
[2022-03-11 00:00:00+00:00, 2022-03-14 00:00:00+00:00, ...],
[Equity(0 [A]), Equity(1 [AAL]), ...]
]
Error:
ValueError: The name date occurs multiple times, use a level number
What I’ve Tried:
- Ensuring no duplicate index level names.
- Resetting the index and dropping duplicates.
- Merging
factor
andfactor_quantile
DataFrames ondate
andasset
.
Here is my latest attempt to resolve the issue:
def plot_factor_returns_quantile_analysis(self):
self.format_alpha_factors()
self.rows.append(helper.html_header("Quantile Analysis - Factor Returns"))
title = "Factor Returns"
ls_factor_returns = pd.DataFrame()
for factor, factor_data in self.clean_factor_data.items():
print(f"Initial index names for factor {factor}: {factor_data.index.names}")
print(f"Initial index levels for factor {factor}: {factor_data.index.levels}")
factor_df = factor_data[['factor']].reset_index()
factor_quantile_df = factor_data[['factor_quantile']].reset_index()
merged_df = pd.merge(factor_df, factor_quantile_df, on=['date', 'asset'], how='outer')
try:
factor_returns = al.performance.factor_returns(
merged_df.set_index(['date', 'asset']), demeaned=True, group_adjust=False, equal_weight=False
).iloc[:, 0]
except ValueError as e:
if 'The name date occurs multiple times' in str(e):
print(f"Handling ValueError for factor {factor}")
merged_df = merged_df.drop_duplicates(subset=['date', 'asset'])
factor_returns = al.performance.factor_returns(
merged_df.set_index(['date', 'asset']), demeaned=True, group_adjust=False, equal_weight=False
).iloc[:, 0]
else:
raise e
factor_returns.name = factor
ls_factor_returns = pd.concat([ls_factor_returns, factor_returns], axis=1)
self.rows.append(helper.html_plotter(
(1 + ls_factor_returns).cumprod().plot(), title)
)
Request for Help:
How can I properly handle the MultiIndex to avoid the duplication error when calculating factor returns with Alphalens? Any insights or alternative solutions would be greatly appreciated.