Writing foldLeft equivalent for recursion schemes

This is a definition of foldr and foldl in terms of foldr:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z []     = z
foldr f z (x:xs) = f x (foldr f z xs)


foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f a bs =
   foldr (b g x -> g (f x b)) id bs a

foldr evaluates right to left and foldl evaluates left to right

In the case of multiplying integers, foldr would do operations in the following order

(1*(2*(3*(4*5))))

Whereas foldl would do

((((1*2)*3)*4)*5)

I’m wondering if/how this could be done more abstractly for recursion schemes over all algebraic datatypes?

Specifically, if I’ve defined catamorphism, anamorphism, paramorphism and apomorphism as follows:


deriving instance (Eq (f (Fix f))) => Eq (Fix f)
deriving instance (Ord (f (Fix f))) => Ord (Fix f)
deriving instance (Show (f (Fix f))) => Show (Fix f)

out :: Fix f -> f (Fix f)
out (In f) = f

-- Catamorphism
type Algebra f a = f a -> a

cata :: (Functor f) => Algebra f a -> Fix f -> a                                                                                                                                
cata f = f . fmap (cata f) . out                                                                                                                                                
                                                                                                                                                                                
-- Anamorphism                                                                                                                                                                  
type Coalgebra f a = a -> f a                                                                                                                                                   
                                                                                                                                                                                
ana :: (Functor f) => Coalgebra f a -> a -> Fix f                                                                                                                               
ana f = In . fmap (ana f) . f                                                                                                                               

-- Paramorphism
type RAlgebra f a = f (Fix f, a) -> a                                                                                          
        
para :: (Functor f) => RAlgebra f a -> Fix f -> a
para rAlg = rAlg . fmap fanout . out
        where fanout t = (t, para rAlg t)
                                                                                                                                                                                
-- Apomorphism
type RCoalgebra f a = a -> f (Either (Fix f) a)                                        
                                                                                       
apo :: Functor f => RCoalgebra f a -> a -> Fix f                                       
apo rCoalg = In . fmap fanin . rCoalg                                                                                                                                           
        where fanin = either id (apo rCoalg)

How could I write catamorphismLeft, anamorphismLeft, paramorphismLeft and apomorphismLeft?

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật