cat = Pipeline([
('onehot', OneHotEncoder(sparse=False, handle_unknown='ignore'))
])
num = Pipeline([
('scaler', StandardScaler(with_mean=False))
])
transformer = ColumnTransformer([
('cat', cat, df.select_dtypes(include='object').columns),
('num', num, df.select_dtypes(include=np.number).columns[:-1])
])
transformer.fit(x_train)
y.unique()
output: array([ 6, 10, 15, 11, 19, 9, 12, 14, 16, 5, 8, 17, 18, 13, 20, 7, 0,
4])
transformer.transform(x_train).shape
output: (316, 57)
model = keras.Sequential([
layers.Dense(7, activation='relu'),
layers.Dropout(0.2),
layers.Dense(7, activation='relu'),
layers.Dense(4, activation='relu'),
layers.Dropout(0.2),
layers.Dense(4, activation='relu'),
layers.Dense(2, activation='softmax'),
])
model.compile(
loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
model.fit(transformer.transform(x_train), y_train, epochs=15)
And i get error like
ValueError: Shapes (None, 1) and (None, 2) are incompatible
what can i do to solve this?